Roles of microglia/macrophage and antibody in cell sheet transplantation in the central nervous system

Author:

Honda Naoto,Watanabe YasuhiroORCID,Tokuoka Yuta,Hanajima Ritsuko

Abstract

Abstract Background We previously established a human mesenchymal stem cell (MSC) line that was modified to express trophic factors. Transplanting a cell sheet produced from this line in an amyotrophic lateral sclerosis mouse model showed a beneficial trend for mouse life spans. However, the sheet survived for less than 14 days, and numerous microglia and macrophages were observed within and adjacent to the sheet. Here, we examined the roles of microglia and macrophages as well as acquired antibodies in cell sheet transplantation. Methods We observed the effects of several MSC lines on macrophages in vitro, that is, phenotype polarization (M1 or M2) and migration. We then investigated how phenotypic polarization affected MSC survival using antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). We also confirmed the role of complement on cytotoxicity. Lastly, we selectively eliminated microglia and macrophages in vivo to determine whether these cells were cytoprotective to the donor sheet. Results In vitro co-culture with MSCs induced M2 polarization in macrophages and facilitated their migration toward MSCs in vitro. There was no difference between M1 and M2 phenotypes on ADCC and ADCP. Cytotoxicity was observed even in the absence of complement. Eliminating microglia/macrophage populations in vivo resulted in increased survival of donor cells after transplantation. Conclusions Acquired antibodies played a role in ADCC and ADCP. MSCs induced M2 polarization in macrophages and facilitated their migration toward MSCs in vitro. Despite these favorable characteristics of microglia and macrophages, deletion of these cells was advantageous for the survival of donor cells in vivo.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3