A homozygous PIWIL2 frameshift variant affects the formation and maintenance of human-induced pluripotent stem cell-derived spermatogonial stem cells and causes Sertoli cell-only syndrome

Author:

Wang Xiaotong,Li Zili,Qu Mengyuan,Xiong Chengliang,Li HonggangORCID

Abstract

Abstract Background The most serious condition of male infertility is complete Sertoli cell-only syndrome (SCOS), which refers to the lack of all spermatogenic cells in the testes. The genetic cause of SCOS remains to be explored. We aimed to investigate the genetic cause of SCOS and assess the effects of the identified causative variant on human male germ cells. Methods Whole-exome sequencing was performed to identify potentially pathogenic variants in a man with complete SCOS, and Sanger sequencing was performed to verify the causative variant in this man and his father and brother. The pathogenic mechanisms of the causative variant were investigated by in vitro differentiation of human-induced pluripotent stem cells (hiPSCs) into germ cell-like cells. Results The homozygous loss-of-function (LoF) variant p.His244ArgfsTer31 (c.731_732delAT) in PIWIL2 was identified as the causative variant in the man with complete SCOS, and the same variant in heterozygosis was confirmed in his father and brother. This variant resulted in a truncated PIWIL2 protein lacking all functional domains, and no PIWIL2 expression was detected in the patient’s testes. The patient and PIWIL2−/− hiPSCs could be differentiated into primordial germ cell-like cells and spermatogonial stem cell-like cells (SSCLCs) in vitro, but the formation and maintenance of SSCLCs were severely impaired. RNA-seq analyses suggested the inactivation of the Wnt signaling pathway in the process of SSCLC induction in the PIWIL2−/− group, which was validated in the patient group by RT-qPCR. The Wnt signaling pathway inhibitor hindered the formation and maintenance of SSCLCs during the differentiation of normal hiPSCs. Conclusions Our study revealed the pivotal role of PIWIL2 in the formation and maintenance of human spermatogonial stem cells. We provided clinical and functional evidence that the LoF variant in PIWIL2 is a genetic cause of SCOS, which supported the potential role of PIWIL2 in genetic diagnosis. Furthermore, our results highlighted the applicability of in vitro differentiation models to function validation experiments.

Funder

National Key Research and Development Program of China

Research Grant from Wuhan Science and Technology Bureau

Postdoctoral Science Foundation Fund of China

PhD research startup foundation of the Third Affiliated Hospital of Zhengzhou University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3