Hypoxia drives hematopoiesis with the enhancement of T lineage through eliciting arterial specification of hematopoietic endothelial progenitors from hESC

Author:

Wang Ning,Chen Chuxin,Cheng Yang,Fu Yingjie,Zhong Zhiyong,Yang Yu,Lv Ling,Chen Honglin,Huang Jian,Duan YuyouORCID

Abstract

Abstract Background Hematopoietic stem cells are able to self-renew and differentiate into all blood cell lineages. Hematopoietic stem cell transplantation is a mainstay of life-saving therapy for hematopoietic malignancies and hypoproliferative disorders. In vitro hematopoietic differentiation of human pluripotent stem cells (hPSCs) is a promising approach for modeling hematopoietic development and cell replacement therapies. Although using hPSCs to derive hematopoietic progenitor cells has achieved some successes in the past, differentiation from hPSCs to produce all hematopoietic cells which can provide robust long-term multilineage engraftment is still very difficult. Here, we reported a novel culture system for hematopoietic differentiation from human embryonic stem cells (hESCs) with optimal cytokines combinations under hypoxia condition. Methods In vitro production of T lineage hematopoietic stem/progenitor cells from hESCs by using hypoxia differentiation system, the effects and the potential mechanism of hypoxia promoting T lineage hematopoiesis were investigated by RT-qPCR validation, cell cycle assay and flow cytometry analysis. Results Using our differentiation system, almost 80% CD45+ cells generated from hESCs were hematopoietic cells and particularly could be further induced into CD3+TCRαβ+ T cells in vitro. We detected more CD34+CD144+ hematopoietic endothelial progenitors (HEPs) induced from hESCs than those in normoxia conditions, and the early HEPs-related gene DLL4 was upregulated by enhancing the hypoxia signaling via potential HIF-1α/NOTCH1/DLL4 axis to enhance arterial feature, thus drove T lineage during the hematopoiesis. Strikingly, hematopoietic cells generated in our system exhibited the potential for all multilineage reconstruction including lymphoid, myeloid and erythroid lineages in vivo by transplantation assay. Conclusion Our results demonstrated that hypoxia plays an important role in T lineage hematopoiesis by promoting the expression of arterial endothelial gene DLL4 and upregulation of NOTCH1 through the activation of the HIF-1α signaling pathway. These results provide a significant approach for in vitro and in vivo production of fully functional hematopoietic stem/progenitor cells from hESCs.

Funder

the National Key Research and Development Program of China Stem cells and Translational Research

Research Starting Funding of South China University of Technology

Research Agreement between South China University of Technology and Guangzhou First People’s Hospital

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3