Abstract
Abstract
Background
Hematopoietic stem cells are able to self-renew and differentiate into all blood cell lineages. Hematopoietic stem cell transplantation is a mainstay of life-saving therapy for hematopoietic malignancies and hypoproliferative disorders. In vitro hematopoietic differentiation of human pluripotent stem cells (hPSCs) is a promising approach for modeling hematopoietic development and cell replacement therapies. Although using hPSCs to derive hematopoietic progenitor cells has achieved some successes in the past, differentiation from hPSCs to produce all hematopoietic cells which can provide robust long-term multilineage engraftment is still very difficult. Here, we reported a novel culture system for hematopoietic differentiation from human embryonic stem cells (hESCs) with optimal cytokines combinations under hypoxia condition.
Methods
In vitro production of T lineage hematopoietic stem/progenitor cells from hESCs by using hypoxia differentiation system, the effects and the potential mechanism of hypoxia promoting T lineage hematopoiesis were investigated by RT-qPCR validation, cell cycle assay and flow cytometry analysis.
Results
Using our differentiation system, almost 80% CD45+ cells generated from hESCs were hematopoietic cells and particularly could be further induced into CD3+TCRαβ+ T cells in vitro. We detected more CD34+CD144+ hematopoietic endothelial progenitors (HEPs) induced from hESCs than those in normoxia conditions, and the early HEPs-related gene DLL4 was upregulated by enhancing the hypoxia signaling via potential HIF-1α/NOTCH1/DLL4 axis to enhance arterial feature, thus drove T lineage during the hematopoiesis. Strikingly, hematopoietic cells generated in our system exhibited the potential for all multilineage reconstruction including lymphoid, myeloid and erythroid lineages in vivo by transplantation assay.
Conclusion
Our results demonstrated that hypoxia plays an important role in T lineage hematopoiesis by promoting the expression of arterial endothelial gene DLL4 and upregulation of NOTCH1 through the activation of the HIF-1α signaling pathway. These results provide a significant approach for in vitro and in vivo production of fully functional hematopoietic stem/progenitor cells from hESCs.
Funder
the National Key Research and Development Program of China Stem cells and Translational Research
Research Starting Funding of South China University of Technology
Research Agreement between South China University of Technology and Guangzhou First People’s Hospital
the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Reference40 articles.
1. Ceglie G, Papetti L, Valeriani M, Merli P. Hematopoietic stem cell transplantation in neuromyelitis optica-spectrum disorders (NMO-SD): state-of-the-art and future perspectives. Int J Mol Sci. 2020;21:5304.
2. Cerrada SL, Altaf SY, Olavarria E. Allogeneic stem cell transplantation from unrelated donors in acute leukaemia. Curr Opin Oncol. 2018;30:418–24.
3. Dahlke J, Zabelina T, Ayuk F, Panse J, Schieder H, Renges H, et al. Allogeneic stem cell transplantation from unrelated donors within the seventh decade of life. Blood. 2005;106:583a-a.
4. Barriga F, Ramirez P, Wietstruck A, Rojas N. Hematopoietic stem cell transplantation: clinical use and perspectives. Biol Res. 2012;45:307–16.
5. Dege C, Sturgeon CM. Directed differentiation of primitive and definitive hematopoietic progenitors from human pluripotent stem cells. Jove-J Vis Exp. 2017;129:e55196.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献