Abstract
Abstract
Background
Natural killer (NK) cells hold great promise in treating diverse hematopoietic and solid tumors. Despite their availability from peripheral blood and cord blood, stem cell-derived NK cells offer an 'off-the-shelf' solution. Hematopoietic stem and progenitor cells (HSPCs) derived from cord blood pose no risk to the newborn or mother and are virtually ideal sources for NK cell differentiation.
Methods
We developed a modified protocol to differentiate HSPCs to NK cells under serum-free conditions using defined factors. The HSPC-derived NK (HSC-NK) cells could be expanded in a K562 feeder cell-dependent manner. Furthermore, using lentivirus transduction, chimeric antigen receptor (CAR)-modified HSPCs could be differentiated into NK cells, leading to the establishment of CAR-NK cells.
Results
The efficiency of NK cell differentiation from HSPCs was increased through the simple modulation of osmotic pressure by the addition of sodium chloride or glucose. Furthermore, the hyperosmosis-primed HSC-NK cells exhibited enhanced proliferation capacity and maintained normal functional characteristics, including transcriptome and antitumor efficacy. The optimized protocol yielded approximately 1.8 million NK cells from a single CD34-positive cell within a 28-day cycle, which signifies more than a ten-fold increase in efficiency relative to the conventional methods. This optimized protocol was also suitable for generating CAR-NK cells with high yields compared to standard conditions.
Conclusions
The results of this study establish high osmotic pressure as a simple yet powerful adjustment that significantly enhances the efficiency and functionality of HSC-NK cells, including CAR-NK cells. This optimized protocol could lead to cost-effective, high-yield NK cell therapies, potentially revolutionizing cancer immunotherapy strategies.
Funder
The National Key Research and Development Program of China
the National Natural Science Foundation of China
the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences
the Haihe Laboratory of Cell Ecosystem Innovation Fund
Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project
the State Key Laboratory of Experimental Hematology Research Grant
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献