Human levator veli palatini muscle: a novel source of mesenchymal stromal cells for use in the rehabilitation of patients with congenital craniofacial malformations

Author:

Bueno Daniela FrancoORCID,Kabayashi Gerson Shigueru,Pinheiro Carla Cristina Gomes,Tanikawa Daniela Y. S.,Raposo-Amaral Cassio Eduardo,Rocha Diogenes Laercio,Ferreira José Ricardo Muniz,Shibuya Yoichiro,Hokugo Akishige,Jarrahy Reza,ZuK Patricia A.,Passos-Bueno Maria Rita

Abstract

Abstract Background Bone reconstruction in congenital craniofacial differences, which affect about 2–3% of newborns, has long been the focus of intensive research in the field of bone tissue engineering. The possibility of using mesenchymal stromal cells in regenerative medicine protocols has opened a new field of investigation aimed at finding optimal sources of multipotent cells that can be isolated via non-invasive procedures. In this study, we analyzed whether levator veli palatini muscle fragments, which can be readily obtained in non-invasive manner during palatoplasty in cleft palate patients, represent a novel source of MSCs with osteogenic potential. Methods We obtained levator veli palatini muscle fragments (3–5 mm3), during surgical repair of cleft palate in 5 unrelated patients. Mesenchymal stromal cells were isolated from the muscle using a pre-plating technique and other standard practices. The multipotent nature of the isolated stromal cells was demonstrated via flow cytometry analysis and by induction along osteogenic, adipogenic, and chondrogenic differentiation pathways. To demonstrate the osteogenic potential of these cells in vivo, they were used to reconstruct a critical-sized full-thickness calvarial defect model in immunocompetent rats. Results Flow cytometry analysis showed that the isolated stromal cells were positive for mesenchymal stem cell antigens (CD29, CD44, CD73, CD90, and CD105) and negative for hematopoietic (CD34 and CD45) or endothelial cell markers (CD31). The cells successfully underwent osteogenic, chondrogenic, and adipogenic cell differentiation under appropriate cell culture conditions. Calvarial defects treated with CellCeram™ scaffolds seeded with the isolated levator veli palatini muscle cells showed greater bone healing compared to defects treated with acellular scaffolds. Conclusion Cells derived from levator veli palatini muscle have phenotypic characteristics similar to other mesenchymal stromal cells, both in vitro and in vivo. Our findings suggest that these cells may have clinical relevance in the surgical rehabilitation of patients with cleft palate and other craniofacial anomalies characterized by significant bone deficit.

Funder

PROADI-SUS

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Reference31 articles.

1. Gorlin RJ, Cohen MMJ, Hennekam RCM. Orofacial clefting syndrome: general aspects. In: Syndromes of the head and neck; 2001. p. 850–76.

2. Vanderas AP. Incidence of cleft lip, cleft palate, and cleft lip and palate among races: a review. Cleft Palate J. 1987;24(3):216–25.

3. Murray JC, Daack-Hirsch S, Buetow KH, Munger RG, Espina L, Paglinawan N, et al. Clinical and epidemiologic studies of cleft lip and palate in the Philippines. Cleft Palate-Craniofacial J. 1997;34(1):7–10.

4. Jones MC. Etiology of facial clefts: prospective evaluation of 428 patients. Cleft Palate J. 1988;1(25):16–20.

5. Thompson JT, Anderson PJ, David DJ. Treacher Collins syndrome: protocol management from birth to maturity. J Craniofac Surg. 2009;20(6):2028–35.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3