Author:
Wang Ying,Zhang Yuying,Chen Kegong,Liu Jie,Wu Donghong,Cheng Yao,Wang Hongjie,Li Yanbo
Abstract
Abstract
Background
Autologous stem cell therapy is a promising strategy for cardiovascular diseases including diabetic cardiomyopathy (DCM), but conclusions from clinical trials were compromised. We assumed that diabetes might induce the dysfunction of stem cells and thus limit its therapeutic effect. This study aimed to compare the effect of diabetes and nondiabetes-derived bone marrow mesenchymal stem cells (BMSCs) transplantation on DCM and explored the potential mechanism.
Methods
Rats with diabetes were induced using high-fat diets and streptozotocin (STZ) injection. BMSCs harvested from diabetic and nondiabetic rats were infused into DCM rats, and the effects on the heart were identified by echocardiography and histopathology. The inhibition or overexpression of SAHH in nondiabetic and diabetic BMSCs was used to confirm its key role in stem cell activity and cardiac therapy.
Results
Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived stem cells on improving cardiac function and adverse remodeling were significantly attenuated. In vitro, diabetic BMSCs had lower cell viability and paracrine function than nondiabetic BMSCs. It was further found that diabetic BMSCs had obvious mitochondrial oxidative stress damage and S-adenosylhomocysteine (SAH) accumulation due to S-adenosylhomocysteine hydrolase (SAHH) deficiency. SAHH inhibition by adenosine dialdehyde (ADA) or shSAHH plasmid in normal BMSCs significantly reduced the favorable effects on endothelial cell proliferation and tube-forming capacity. In contrast, SAHH overexpression in diabetic BMSCs significantly improved cellular activity and paracrine function. Transplantation of BMSCs with SAHH overexpression improved cardiac adverse remodeling and angiogenesis. Activation of the Nrf2 signaling pathway may be one of the key mechanisms of SAHH-mediated improvement of stem cell viability and cardiac repair.
Conclusions
Diabetes leads to compromised bioactivity and repair capacity of BMSCs. Our study suggests that SAHH activation may improve the cardioprotective effect of autologous transplantation of diabetes-derived BMSCs on patients with DCM.
Graphical abstract
Diabetes induced the inhibition of S-adenosylhomocysteine (SAH) expression and aging phenotype in BMSCs and thus decreased the cell viability and paracrine function. Compared with normal BMSCs, the therapeutic effects of diabetic rat-derived BMSCs on improving cardiac function and adverse remodeling were significantly attenuated. SAHH overexpression in diabetic BMSCs significantly rescued cellular function partly via activating Nrf2/HO-1 signal. Transplantation of diabetic BMSCs with SAHH overexpression improved angiogenesis and cardiac adverse remodeling in rats.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献