Abstract
Abstract
Background
Limbal stem cells (LSC) sustain the corneal integrity and homeostasis. LSC deficiency (LSCD) leads to loss of corneal transparency and blindness. A clinical approach to treat unilateral LSCD comprises autologous cultured limbal epithelial stem cell transplantation (CLET). CLET uses xenobiotic culture systems with potential zoonotic transmission risks, and regulatory guidelines make necessary to find xenofree alternatives.
Methods
We compared two xenofree clinical grade media and two feeder layers. We used CnT07, a defined commercial medium for keratinocytes, and a modified xenofree supplemented hormonal epithelial medium with human serum (XSHEM). Optimal formulation was used to compare two feeder layers: the gold standard 3T3 murine fibroblasts and human processed lipoaspirate cells (PLA). We tested the expressions of ΔNp63α and cytokeratin 3 and 12 by qPCR and immunofluorescence. Morphology, viability, clonogenicity, proliferation, and cell growth assays were carried out. We also evaluated interleukin 6 (IL-6) and stromal-derived factor 1 (SDF-1) by qPCR and ELISA.
Results
XSHEM maintained better LSC culture viability and morphology than CnT07. Irradiated PLA feeder cells improved the undifferentiated state of LSC and enhanced their growth and clonogenicity stimulating IL-6 secretion and SDF-1 expression, as well as increased proliferation and cell growth when compared with irradiated 3T3 feeder cells.
Conclusions
The combination of XSHEM and PLA feeder cells efficiently sustained LSC xenofree cultures for clinical application. Moreover, PLA feeder layers were able to improve the LSC potential characteristics. Our results would have direct clinical application in CLET for advanced therapy.
Graphical abstract
Funder
Instituto de Salud Carlos III
Fundació la Marató de TV3
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献