Comparing the effect of bone marrow mono-nuclear cells with mesenchymal stem cells after acute myocardial infarction on improvement of left ventricular function: a meta-analysis of clinical trials

Author:

Hosseinpour Alireza,Kheshti Fatemeh,Kazemi Asma,Attar ArminORCID

Abstract

Abstract Background The effect of transplantation of bone-marrow mononuclear cells (BM-MNCs) and mesenchymal stem cells (MSCs) on ejection fraction (LVEF) has been studied in patients with acute myocardial infarction (AMI) in clinical trials. This raises the question that which type of cell may help improve LVEF better in AMI patients. No meta-analysis of clinical trials has yet addressed this question. Methods Electronic databases were searched thoroughly to find eligible trials on the effects of transplantation of BM-MNCs and MSCs in patients with AMI. The primary outcome was improvement in LVEF. Data were synthesized using random-effects meta-analysis. For maximizing the credibility of subgroup analysis, we used the instrument for assessing the Credibility of Effect Modification of Analyses (ICEMAN) for meta-analyses. Results A total of 36 trials (26 on BM-MNCs and 10 on MSCs) with 2489 patients (1466 were transplanted [1241 with BM-MNCs and 225 with MSCs] and 1023 as controls) were included. Both types of cells showed significant improvements in ejection fraction in short-term follow-up (BM-MNCs: WMD = 2.13%, 95% CI = 1.23 to 3.04, p < 0.001; MSCs: WMD = 3.71%, 95% CI = 2.32 to 5.09, p < 0.001), and according to ICEMAN criteria, MSCs are more effective. For selected population of patients who received stem cell transplantation in early course after AMI (less than 11 days), this effect was even more pronounced (BM-MNC: WMD = 3.07%, 95% CI = 1.97 to 4.17, p < 0.001, I2 = 40.7%; MSCs: WMD = 5.65%, 95% CI = 3.47 to 7.84, p < 0.001, I2 = 84.6%). Conclusion Our results showed that transplantation of MSCs after AMI might increase LVEF more than BM-MNCs; also, based on ICEMAN, there was likely effect modification between subgroups although uncertainty still remained.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3