Adipose-derived stromal cells modulating composite allotransplant survival is correlated with B cell regulation in a rodent hind-limb allotransplantation model

Author:

Chen Chien-Chang,Chen Rong-Fu,Shao Jheng-Syuan,Li Yun-Ting,Wang Yu-Chi,Brandacher Gerald,Chuang Jiin-Haur,Kuo Yur-RenORCID

Abstract

Abstract Background Our previous studies demonstrated that adipose-derived mesenchymal stromal cells (ASCs) have immunomodulatory effects that prolong allograft survival in a rodent hind-limb allotransplant model. In this study, we investigated whether the effects of immunomodulation by ASCs on allograft survival are correlated with B cell regulation. Methods B cells isolated from splenocytes were cocultured with ASCs harvested from adipose tissue from rodent groin areas for in vitro experiments. In an in vivo study, hind-limb allotransplantation from Brown-Norway to Lewis rats was performed, and rats were treated with ASCs combined with short-term treatment with anti-lymphocyte serum (ALS)/cyclosporine (CsA) as immunosuppressants. Peripheral blood and transplanted tissue were collected for further analysis. Result An in vitro study revealed that ASCs significantly suppressed lipopolysaccharide-activated B cell proliferation and increased the percentage of Bregs. The levels of immunoregulatory cytokines, such as TGF-β1 and IL-10, were significantly increased in supernatants of stimulated B cells cocultured with ASCs. The in vivo study showed that treatment with ASCs combined with short-term ALS/CsA significantly reduced the B cell population in alloskin tissue, increased the proportion of circulating CD45Ra+/Foxp3+ B cells, and decreased C4d expression in alloskin. Conclusion ASCs combined with short-term immunosuppressant treatment prolong allograft survival and are correlated with B cell regulation, C4d expression and the modulation of immunoregulatory cytokines.

Funder

Ministry of Science and Technology, Taiwan

Kaohsiung Medical University Chung-Ho Memorial Hospital

Kaohsiung Medical University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3