Abstract
Abstract
Background
Autologous mesenchymal stem cells (MSCs) have emerged as a therapeutic option for many diseases. Hypertensive kidney disease (HKD) might impair MSCs’ reparative ability by altering the biomolecular properties, but the characteristics of this impairment are unclear. In our previous pre-clinical studies, we found hypoxic preconditioning (HPC) enhanced angiogenesis and suppressed senescence gene expression. Thus, we hypothesize that HPC would improve human MSCs by enhancing their functionality and angiogenesis, creating an anti-inflammatory and anti-senescence environment.
Methods
MSC samples (n = 12 each) were collected from the abdominal fat of healthy kidney donors (HC), hypertensive patients (HTN), and patients with hypertensive kidney disease (HKD). MSCs were harvested and cultured in Normoxic (20% O2) or Hypoxic (1% O2) conditions. MSC functionality was measured by proliferation assays and cytokine released in conditioned media. Senescence was evaluated by senescence-associated beta-galactosidase (SA-beta-gal) activity. Additionally, transcriptome analysis using RNA-sequencing and quantitative PCR (qPCR) were performed.
Results
At baseline, normoxic HTN-MSCs had higher proliferation capacity compared to HC. However, HPC augmented proliferation in HC. HPC did not affect the release of pro-angiogenic protein VEGF, but increased EGF in HC-MSC, and decreased HGF in HC and HKD MSCs. Under HPC, SA-β-gal activity tended to decrease, particularly in HC group. HPC upregulated mostly the pro-angiogenic and inflammatory genes in HC and HKD and a few senescence genes in HKD.
Conclusions
HPC has a more favorable functional effect on HC- than on HKD-MSC, reflected in increased proliferation and EGF release, and modest decrease in senescence, whereas it has little effect on HTN or HKD MSCs.
Funder
National Institute for Health Care Management Foundation
Publisher
Springer Science and Business Media LLC
Reference60 articles.
1. Prevention CfDCa: Chronic Kidney Disease in the United States. 2021. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, 2021.
2. Bidani AK, Griffin KA. Pathophysiology of hypertensive renal damage. Hypertension. 2004;44:595–601.
3. Hsu C-y, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165:923–8.
4. Long DA, Norman JT, Fine LG. Restoring the renal microvasculature to treat chronic kidney disease. Nat Rev Nephrol. 2012;8:244–50.
5. López-Novoa JM, Rodríguez-Peña AB, Ortiz A, Martínez-Salgado C, López Hernández FJ. Etiopathology of chronic tubular, glomerular and renovascular nephropathies: clinical implications. J Transl Med. 2011;9:13.