The role of regenerative therapy in the treatment of right ventricular failure: a literature review

Author:

Haller Christoph,Friedberg Mark K.,Laflamme Michael A.

Abstract

AbstractRight ventricular (RV) failure is a commonly encountered problem in patients with congenital heart disease but can also be a consequence of left ventricular disease, primary pulmonary hypertension, or RV-specific cardiomyopathies. Improved survival of the aforementioned pathologies has led to increasing numbers of patients suffering from RV dysfunction, making it a key contributor to morbidity and mortality in this population. Currently available therapies for heart failure were developed for the left ventricle (LV), and there is clear evidence that LV-specific strategies are insufficient or inadequate for the RV. New therapeutic strategies are needed to address this growing clinical problem, and stem cells show significant promise. However, to properly evaluate the prospects of a potential stem cell-based therapy for RV failure, one needs to understand the unique pathophysiology of RV dysfunction and carefully consider available data from animal models and human clinical trials. In this review, we provide a comprehensive overview of the molecular mechanisms involved in RV failure such as hypertrophy, fibrosis, inflammation, changes in energy metabolism, calcium handling, decreasing RV contractility, and apoptosis. We also summarize the available preclinical and clinical experience with RV-specific stem cell therapies, covering the broad spectrum of stem cell sources used to date. We describe two different scientific rationales for stem cell transplantation, one of which seeks to add contractile units to the failing myocardium, while the other aims to augment endogenous repair mechanisms and/or attenuate harmful remodeling. We emphasize the limitations and challenges of regenerative strategies, but also highlight the characteristics of the failing RV myocardium that make it a promising target for stem cell therapy.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3