Abstract
Abstract
Background
Senescent adipose-derived stem cells (ASCs) exhibit reduced therapeutic efficacy during wound healing. Transcriptional regulation factors including long noncoding RNAs (lncRNAs) reportedly have essential roles in stem cell aging. However, the mechanisms of which lncRNAs influence mesenchymal stem cell aging and how it works need further investigation.
Methods
The expression patterns of lncRNA senescence-associated noncoding RNA (SAN) and miR-143-3p in ASCs obtained from old and young volunteer donors were detected by quantitative polymerase chain reaction. ASCs with overexpression or knockdown of SAN and γ-adducin (ADD3) were constructed by lentiviral transduction. Mimic and inhibitor were used to manipulate the cellular level of miR-143-3p in ASCs. The effects of these RNAs on ASCs proliferation, migration and cellular senescence were examined by EdU, transwell and senescence-activated β-galactosidase (SA-β-gal) staining assays. Wound scratch and tube formation assays were conducted to evaluate the capacities of ASCs in promoting fibroblasts migration and endothelial cells angiogenesis. Furthermore, dual-luciferase assays and rescue experiments were performed to identify the RNA interactions. Finally, the therapeutic effects of SAN-depleted aged ASCs were evaluated in a skin injury model.
Results
The lncRNA SAN (NONHSAT035482.2) was upregulated in aged ASCs; it controlled cellular senescence in ASCs. lncRNA SAN knockdown in ASCs led to ASC functional enhancement and the inhibition of cellular senescence; it also promoted the effects of conditioned medium (CM) on endothelial cell tube formation and fibroblast migration. Mechanistic analysis showed that SAN serves as a sponge for miR-143-3p, thereby regulating the expression of ADD3. The application of SAN-depleted aged ASCs increased re-epithelialization, collagen deposition, neovascularization and led to accelerated skin wound closure, compared with transplantation of aged ASCs.
Conclusion
The lncRNA SAN mediates ASC senescence by regulating the miR-143-3p/ADD3 pathway, providing a potential target for rejuvenation of senescent ASCs and enhancement of wound repair.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献