EGR1 dysregulation defines an inflammatory and leukemic program in cell trajectory of human-aged hematopoietic stem cells (HSC)

Author:

Desterke Christophe,Bennaceur-Griscelli Annelise,Turhan Ali G.ORCID

Abstract

Abstract Background During aging, hematopoietic stem cells (HSC) lose progressively both their self-renewal and differentiation potential. The precise molecular mechanisms of this phenomenon are not well established. To uncover the molecular events underlying this event, we have performed a bioinformatics analysis of 650 single-cell transcriptomes. Methods Single-cell transcriptome analyses of expression heterogeneity, cell cycle, and cell trajectory in human cell compartment enriched in hematopoietic stem cell compartment were investigated in the bone marrow according to the age of the donors. Identification of aging-related nodules was identified by weighted correlation network analysis in this primitive compartment. Results The analysis of single-cell transcriptomes allowed to uncover a major upregulation of EGR1 in human-aged lineage−CD34+CD38− cells which present cell cycle dysregulation with reduction of G2/M phase according to less expression of CCND2 during S phase. EGR1 upregulation in aging hematopoietic stem cells was found to be independent of cell cycle phases and gender. EGR1 expression trajectory in aged HSC highlighted a signature enriched in hematopoietic and immune disorders with the best induction of AP-1 complex and quiescence regulators such as EGR1, BTG2, JUNB, and NR41A. Sonic Hedgehog-related TMEM107 transmembrane molecule followed also EGR1 cell trajectory. EGR1-dependent gene weighted network analysis in human HSC-associated IER2 target protein-specific regulators of PP2A activity, IL1B, TNFSF10 ligands, and CD69, SELP membrane molecules in old HSC module with immune and leukemogenic signature. In contrast, for young HSC which were found with different cell cycle phase progression, its specific module highlighted upregulation of HIF1A hypoxic factor, PDE4B immune marker, DRAK2 (STK17B) T cell apoptosis regulator, and MYADM myeloid-associated marker. Conclusion EGR1 was found to be connected to the aging of human HSC and highlighted a specific cell trajectory contributing to the dysregulation of an inflammatory and leukemia-related transcriptional program in aged human HSCs. EGR1 and its program were found to be connected to the aging of human HSC with dissociation of quiescence property and cell cycle phase progression in this primitive hematopoietic compartment.

Funder

ANR “Programme d’Investissements d’Avenir”

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3