Author:
Hsu Chih-Chien,Chien Ke-Hung,Yarmishyn Aliaksandr A.,Buddhakosai Waradee,Wu Wen-Ju,Lin Tai-Chi,Chiou Shih-Hwa,Chen Jiann-Torng,Peng Chi-Hsien,Hwang De-Kuang,Chen Shih-Jen,Chang Yuh-Lih
Abstract
Abstract
Background
Transient receptor potential vanilloid 1 (TRPV1), recognized as a hyperosmolarity sensor, is a crucial ion channel involved in the pathogenesis of neural and glial signaling. Recently, TRPV1 was determined to play a role in retinal physiology and visual transmission. In this study, we sought to clarify the role of TRPV1 and the downstream pathway in the osmotic stress-related retina ganglion cell (RGC) damage.
Methods
First, we modified the RGC differentiation protocol to obtain a homogeneous RGC population from human induced pluripotent stem cells (hiPSCs). Subsequently, we induced high osmotic pressure in the hiPSC-derived RGCs by administering NaCl solution and observed the behavior of the TRPV1 channel and its downstream cascade.
Results
We obtained a purified RGC population from the heterogeneous retina cell population using our modified method. Our findings revealed that TRPV1 was activated after 24 h of NaCl treatment. Upregulation of TRPV1 was noted with autophagy and apoptosis induction. Downstream protein expression analysis indicated increased phosphorylation of CREB and downregulated brain-derived neurotrophic factor (BDNF). However, hyperosmolarity-mediated defective morphological change and apoptosis of RGCs, CREB phosphorylation, and BDNF downregulation were abrogated after concomitant treatment with the PKA inhibitor H89.
Conclusion
Collectively, our study results indicated that the TRPV1–PKA pathway contributed to cellular response under high levels of osmolarity stress; furthermore, the PKA inhibitor had a protective effect on RGCs exposed to this stress. Therefore, our findings may assist in the treatment of eye diseases involving RGC damage.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Reference52 articles.
1. Madonna R, Montebello E, Lazzerini G, Zurro M, De Caterina R. NA+/H+ exchanger 1- and aquaporin-1-dependent hyperosmolarity changes decrease nitric oxide production and induce VCAM-1 expression in endothelial cells exposed to high glucose. Int J Immunopathol Pharmacol. 2010;23(3):755–65.
2. Madonna R, Giovannelli G, Confalone P, Renna FV, Geng YJ, De Caterina R. High glucose-induced hyperosmolarity contributes to COX-2 expression and angiogenesis: implications for diabetic retinopathy. Cardiovasc Diabetol. 2016;15:18.
3. Hollborn M, Reichmuth K, Prager P, Wiedemann P, Bringmann A, Kohen L. Osmotic induction of placental growth factor in retinal pigment epithelial cells in vitro: contribution of NFAT5 activity. Mol Biol Rep. 2016;43(8):803–14.
4. Hollborn M, Fischer S, Kuhrt H, Wiedemann P, Bringmann A, Kohen L. Osmotic regulation of NFAT5 expression in RPE cells: the involvement of purinergic receptor signaling. Mol Vis. 2017;23:116–30.
5. Zhang D, Wang C, Cao S, Ye Z, Deng B, Kijlstra A, et al. High-salt enhances the inflammatory response by retina pigment epithelium cells following lipopolysaccharide stimulation. Mediat Inflamm. 2015;2015:197521.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献