Biomaterial-supported MSC transplantation enhances cell–cell communication for spinal cord injury

Author:

Lv Bin,Zhang Xing,Yuan Jishan,Chen Yongxin,Ding Hua,Cao Xinbing,Huang Anquan

Abstract

AbstractThe spinal cord is part of the central nervous system (CNS) and serves to connect the brain to the peripheral nervous system and peripheral tissues. The cell types that primarily comprise the spinal cord are neurons and several categories of glia, including astrocytes, oligodendrocytes, and microglia. Ependymal cells and small populations of endogenous stem cells, such as oligodendrocyte progenitor cells, also reside in the spinal cord. Neurons are interconnected in circuits; those that process cutaneous sensory input are mainly located in the dorsal spinal cord, while those involved in proprioception and motor control are predominately located in the ventral spinal cord. Due to the importance of the spinal cord, neurodegenerative disorders and traumatic injuries affecting the spinal cord will lead to motor deficits and loss of sensory inputs.Spinal cord injury (SCI), resulting in paraplegia and tetraplegia as a result of deleterious interconnected mechanisms encompassed by the primary and secondary injury, represents a heterogeneously behavioral and cognitive deficit that remains incurable. Following SCI, various barriers containing the neuroinflammation, neural tissue defect (neurons, microglia, astrocytes, and oligodendrocytes), cavity formation, loss of neuronal circuitry, and function must be overcame. Notably, the pro-inflammatory and anti-inflammatory effects of cell–cell communication networks play critical roles in homeostatic, driving the pathophysiologic and consequent cognitive outcomes. In the spinal cord, astrocytes, oligodendrocytes, and microglia are involved in not only development but also pathology. Glial cells play dual roles (negative vs. positive effects) in these processes. After SCI, detrimental effects usually dominate and significantly retard functional recovery, and curbing these effects is critical for promoting neurological improvement. Indeed, residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (macrophages and neutrophils), activated by SCI, give rise to full-blown inflammatory cascades. These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit.Given the various multifaceted obstacles in SCI treatment, a combinatorial therapy of cell transplantation and biomaterial implantation may be addressed in detail here. For the sake of preserving damaged tissue integrity and providing physical support and trophic supply for axon regeneration, MSC transplantation has come to the front stage in therapy for SCI with the constant progress of stem cell engineering. MSC transplantation promotes scaffold integration and regenerative growth potential. Integrating into the implanted scaffold, MSCs influence implant integration by improving the healing process. Conversely, biomaterial scaffolds offer MSCs with a sheltered microenvironment from the surrounding pathological changes, in addition to bridging connection spinal cord stump and offering physical and directional support for axonal regeneration. Besides, Biomaterial scaffolds mimic the extracellular matrix to suppress immune responses.Here, we review the advances in combinatorial biomaterial scaffolds and MSC transplantation approach that targets certain aspects of various intercellular communications in the pathologic process following SCI. Finally, the challenges of biomaterial-supported MSC transplantation and its future direction for neuronal regeneration will be presented.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3