Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice

Author:

Ezquer Marcelo,Urzua Cristhian A.,Montecino Scarleth,Leal Karla,Conget Paulette,Ezquer Fernando

Abstract

Abstract Background Diabetic retinopathy is a common complication of diabetes and the leading cause of irreversible vision loss in the Western world. The reduction in color/contrast sensitivity due to the loss of neural cells in the ganglion cell layer of the retina is an early event in the onset of diabetic retinopathy. Multipotent mesenchymal stromal cells (MSCs) are an attractive tool for the treatment of neurodegenerative diseases, since they could differentiate into neuronal cells, produce high levels of neurotrophic factors and reduce oxidative stress. Our aim was to determine whether the intravitreal administration of adipose-derived MSCs was able to prevent the loss of retinal ganglion cells in diabetic mice. Methods Diabetes was induced in C57BL6 mice by the administration of streptozotocin. When retinal pro-damage mechanisms were present, animals received a single intravitreal dose of 2 × 105 adipose-derived MSCs or the vehicle. Four and 12 weeks later we evaluated: (a) retinal ganglion cell number (immunofluorescence); (b) neurotrophic factor levels (real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA)); (c) retinal apoptotic rate (TUNEL); (d) retinal levels of reactive oxygen species and oxidative damage (ELISA); (e) electrical response of the retina (electroretinography); (f) pro-angiogenic and anti-angiogenic factor levels (RT-qPCR and ELISA); and (g) retinal blood vessels (angiography). Furthermore, 1, 4, 8 and 12 weeks post-MSC administration, the presence of donor cells in the retina and their differentiation into neural and perivascular-like cells were assessed (immunofluorescence and flow cytometry). Results MSC administration completely prevented retinal ganglion cell loss. Donor cells remained in the vitreous cavity and did not differentiate into neural or perivascular-like cells. Nevertheless, they increased the intraocular levels of several potent neurotrophic factors (nerve growth factor, basic fibroblast growth factor and glial cell line-derived neurotrophic factor) and reduced the oxidative damage in the retina. Additionally, MSC administration has a neutral effect on the electrical response of the retina and did not result in a pathological neovascularization. Conclusions Intravitreal administration of adipose-derived MSCs triggers an effective cytoprotective microenvironment in the retina of diabetic mice. Thus, MSCs represent an interesting tool in order to prevent diabetic retinopathy.

Funder

FONDECYT GRANT

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3