Enhanced angiogenic potential of adipose-derived stem cell sheets by integration with cell spheroids of the same source

Author:

Yu Jiashing,Hsu Yi-Chiung,Lee Jen-Kuang,Cheng Nai-ChenORCID

Abstract

Abstract Background Adipose-derived stem cell (ASC) has been considered as a desirable source for cell therapy. In contrast to combining scaffold materials with cells, ASCs can be fabricated into scaffold-free three-dimensional (3D) constructs to promote regeneration at tissue level. However, previous reports have found decreased expression of vascular endothelial growth factor (VEGF) in ASC sheets. In this study, we aimed to integrate ASC spheroids into ASC sheets to enhance the angiogenic capability of cell sheets. Methods ASCs were seeded in agarose microwells to generate uniform cell spheroids with adjustable size, while extracellular matrix deposition could be stimulated by ascorbic acid 2-phosphate to form ASC sheets. RNA sequencing was performed to identify the transcriptomic profiles of ASC spheroids and sheets relative to monolayer ASCs. By transferring ASC spheroids onto ASC sheets, the spheroid sheet composites could be successfully fabricated after a short-term co-culture, and their angiogenic potential was evaluated in vitro and in ovo. Results RNA sequencing analysis revealed that upregulation of angiogenesis-related genes was found only in ASC spheroids. The stimulating effect of spheroid formation on ASCs toward endothelial lineage was demonstrated by enhanced CD31 expression, which maintained after ASC spheroids were seeded on cell sheets. Relative to ASC sheets, enhanced expression of VEGF and hepatocyte growth factor was also noted in ASC spheroid sheets, and conditioned medium of ASC spheroid sheets significantly enhanced tube formation of endothelial cells in vitro. Moreover, chick embryo chorioallantoic membrane assay showed a significantly higher capillary density with more branch points after applying ASC spheroid sheets, and immunohistochemistry also revealed a significantly higher ratio of CD31-positive area. Conclusion In the spheroid sheet construct, ASC spheroids can augment the pro-angiogenesis capability of ASC sheets without the use of exogenous biomaterial or genetic manipulation. The strategy of this composite system holds promise as an advance in 3D culture technique of ASCs for future application in angiogenesis and regeneration therapies.

Funder

Ministry of Science and Technology, Taiwan

National Taiwan University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3