Human umbilical cord mesenchymal stem cells-derived exosomes for treating traumatic pancreatitis in rats

Author:

Han Li,Zhao Zhirong,Chen Xingyun,Yang Ke,Tan Zhen,Huang Zhu,Zhou Lichen,Dai RuiwuORCID

Abstract

Abstract Background The therapeutic and protective effects of human umbilical cord mesenchymal stem cells-exosomes (hucMSC-Exs) on traumatic pancreatitis (TP) remain unknown. Here, we established a rat model of TP and evaluated and compared the therapeutic effects of hUC-MSCs and hucMSC-Exs. Methods HucMSC-Exs were obtained by ultracentrifugation and identified using transmission electron microscopy and western blot analysis. TP rats were treated by tail vein injection of hUC-MSCs and hucMSC-Exs. Their homing in rats was observed by performing fluorescence microscopy. The degree of pancreatic tissue damage was assessed by HE staining, the expression levels of amylase, lipase, and inflammatory cytokines were detected by ELISA, apoptosis was detected by TUNEL assay, and the expression levels of various apoptosis-related proteins were detected by western-blot. The expression levels of apoptosis-related molecular markers were detected by RT-qPCR. Results The colonization of exosomes was observed in pancreatic tissue. Compared to TP group, the histopathological score of pancreas was significantly decreased in the TP + hUC-MSCs group and TP + hucMSC-Exs group (P < 0.05). Compared to TP group, the activity of serum amylase and lipase was significantly decreased (P < 0.05). The expression levels of IL-6 and TNF-α were significantly decreased, while those of IL-10 and TGF-β were significantly increased (P < 0.05). The apoptosis index of the TP group was significantly increased (P < 0.05), whereas that of the TP + hUC-MSCs and TP + hucMSC-Exs groups was significantly decreased (P < 0.05). Compared to TP group, the expression levels of Bax, Bcl-2, and Caspase-3 were significantly decreased in the TP + hUC-MSCs group and TP + hucMSC-Exs group (P < 0.05). Conclusion HucMSC-Exs can colonize injured pancreatic tissue, inhibit the apoptosis of acinar cells, and control the systemic inflammatory response to facilitate the repair of pancreatic tissue.

Funder

Sichuan Province Science and Technology Support Program

Hospital Management of the General Hospital of Western Theater Command

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3