GDF-5 promotes epidermal stem cells proliferation via Foxg1-cyclin D1 signaling

Author:

Zhao Xiaohong,Bian Ruyu,Wang Fan,Wang Ying,Li Xue,Guo Yicheng,Zhang Xiaorong,Luo Gaoxing,Zhan RixingORCID

Abstract

Abstract Objective Epidermal stem cells (EpSCs) can self-renew, which are responsible for the long-term maintenance of the skin, and it also plays a critical role in wound re-epithelization, but the mechanism underlying EpSCs proliferation is unclear. GDF-5, also known as BMP-14, is a member of the BMP family and can be used as a self-renewal supporter. Here, we studied the effects of GDF-5 on mouse EpSCs proliferation mechanism in wound healing. Methods Firstly, the effects of GDF-5 on EpSCs proliferation was tested by using CCK8 reagent and PCNA expression was analyzed by Western blotting. Secondly, we screened genes that promote EpSCs proliferation in the FOX and cyclin family by qPCR, and then the protein expression level of the selected genes was further analyzed by Western blotting. Thirdly, siRNA plasmids and pAdEasy adenovirus were transfected or infected, respectively, into mouse EpSCs to detect the effect of target genes on GDF-5-induced cell proliferation. Furthermore, we injected GDF-5 to a deep partial thickness burn mouse model for finding out whether EpSCs proliferation can be detected by immunohistochemical. Finally, the relevant target genes were analyzed by qPCR, immunoblotting, and dual-luciferase reporter gene detection. Results We discovered that 100 ng/ml recombinant mouse GDF-5 was the optimal concentration for promoting mouse EpSCs proliferation. Through preliminary screened by qPCR, we found that Foxg1 and cyclin D1 could be the downstream molecules of GDF-5, and the results were confirmed by Western blotting. And the effect of GDF-5 on mouse EpSCs proliferation was adjusted by Foxg1/cyclin D1 in vitro and in vivo. Besides, GDF-5-induced transcription of cyclin D1 was regulated by Foxg1-mediated cyclin D1 promoter activity. Conclusion This paper showed that GDF-5 promotes mouse EpSCs proliferation via Foxg1-cyclin D1 signal pathway. It is suggested that GDF-5 may be a new approach to make EpSCs proliferation which can be used in wound healing.

Funder

Chongqing Science and Technology Commission

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3