Development of a human umbilical cord-derived mesenchymal stromal cell-based advanced therapy medicinal product to treat immune and/or inflammatory diseases

Author:

Mebarki MiryamORCID,Iglicki Nathan,Marigny Céline,Abadie Camille,Nicolet Claire,Churlaud Guillaume,Maheux Camille,Boucher Hélène,Monsel Antoine,Menasché Philippe,Larghero Jérôme,Faivre Lionel,Cras Audrey

Abstract

Abstract Background Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) revealed their key role in immune regulation, offering promising therapeutic perspectives for immune and inflammatory diseases. We aimed to develop a production process of an UC-MSC-based product and then to characterize UC-MSC properties and immunomodulatory activities in vitro, related to their clinical use and finally, to transfer this technology to a good manufacturing practice (GMP) compliant facility, to manufacture an advanced therapy medicinal product (ATMP). Methods Fifteen human umbilical cords (UCs) were collected to develop the production process. Three batches of UC-MSCs from a single donor were characterized at basal state and after in vitro pro-inflammatory stimulation by interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα). Proliferation, immunophenotype, activation markers’ expression and the inhibition of T cell proliferation were assessed. Finally, this technology was transferred to a GMP-compliant facility to manufacture an UC-MSC-based ATMP, from a single donor, using the explant method followed by the establishment of master and work cell stocks. Results Twelve UCs were processed successfully allowing to isolate UC-MSCs with doubling time and population doubling remaining stable until passage 4. CD90, CD105, CD73, CD44, CD29, CD166 expression was positive; CD14, CD45, CD31, HLA-DR, CD40, CD80 and CD86 expression was negative, while CD146 and HLA-ABC expression was heterogeneous. Cell morphology, proliferation and immunophenotype were not modified by inflammatory treatment. Indoleamine 2,3-dioxygenase (IDO) expression was significantly induced by IFNγ and IFNγ + TNFα versus non-treated cells. Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expression was induced significantly after priming. T cell proliferation was significantly decreased in the presence of UC-MSCs in a dose-dependent manner. This inhibitory effect was improved by IFNγ or IFNγ + TNFα, at UC-MSCs:PBMC ratio 1:10 and 1:30, whereas only IFNγ allowed to decrease significantly T cell proliferation at ratio 1:100. The manufacturing process of the UC-MSC-based ATMP was qualified and authorized by the French regulatory agency for clinical use (NCT04333368). Conclusion This work allowed to develop an investigational UC-MSC-based ATMP authorized for clinical use. Our results showed that an inflammatory environment preserves the biological properties of UC-MSCs with an improvement of their immunomodulatory functions.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3