Vitamin C facilitates direct cardiac reprogramming by inhibiting reactive oxygen species

Author:

Fang Juntao,Yang Qiangbing,Maas Renée G. C.,Buono Michele,Meijlink Bram,Lotgerink Bruinenberg Dyonne,Benavente Ernest Diez,Mokry Michal,van Mil Alain,Qian Li,Goumans Marie-José,Schiffelers Raymond,Lei ZhiyongORCID,Sluijter Joost P. G.

Abstract

Abstract Background After myocardial infarction, the lost myocardium is replaced by fibrotic tissue, eventually progressively leading to myocardial dysfunction. Direct reprogramming of fibroblasts into cardiomyocytes via the forced overexpression of cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) offers a promising strategy for cardiac repair. The limited reprogramming efficiency of this approach, however, remains a significant challenge. Methods We screened seven factors capable of improving direct cardiac reprogramming of both mice and human fibroblasts by evaluating small molecules known to be involved in cardiomyocyte differentiation or promoting human-induced pluripotent stem cell reprogramming. Results We found that vitamin C (VitC) significantly increased cardiac reprogramming efficiency when added to GMT-overexpressing fibroblasts from human and mice in 2D and 3D model. We observed a significant increase in reactive oxygen species (ROS) generation in human and mice fibroblasts upon Doxy induction, and ROS generation was subsequently reduced upon VitC treatment, associated with increased reprogramming efficiency. However, upon treatment with dehydroascorbic acid, a structural analog of VitC but lacking antioxidant properties, no difference in reprogramming efficiency was observed, suggesting that the effect of VitC in enhancing cardiac reprogramming is partly dependent of its antioxidant properties. Conclusions Our findings demonstrate that VitC supplementation significantly enhances the efficiency of cardiac reprogramming, partially by suppressing ROS production in the presence of GMT. Graphical abstract

Funder

European Research Council

ZonMw-TAS program

Dutch Heart Foundation

Chinese Scholarship Council

PLN Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Reference41 articles.

1. Townsend N, Nichols M, Scarborough P, Rayner M. Cardiovascular disease in Europe–epidemiological update 2015. Eur Heart J. 2015;36:2696–705.

2. Jenca D, Melenovsky V, Stehlik J, Stanek V, Kettner J, Kautzner J, Adamkova V, Wohlfahrt P. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail. 2021;8:222–37.

3. Rosendorff C, Lackland DT, Allison M, Aronow WS, Black HR, Blumenthal RS, Cannon CP, de Lemos JA, Elliott WJ, Findeiss L, Gersh BJ, Gore JM, Levy D, Long JB, O’Connor CM, O’Gara PT, Ogedegbe O, Oparil S, White WB, A.C.o.C. American Heart Association, H. American Society of, Treatment of hypertension in patients with coronary artery disease: a scientific statement from the American Heart Association, American College of Cardiology, and American Society of Hypertension. J Am Soc Hypertens. 2015;9:453–98.

4. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task force on clinical practice guidelines and the Heart Failure Society of America. Circulation. 2017;136(2017):e137–61.

5. Pinney SP, Anyanwu AC, Lala A, Teuteberg JJ, Uriel N, Mehra MR. Left ventricular assist devices for lifelong support. J Am Coll Cardiol. 2017;69:2845–61.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3