Author:
Dingle Marvin,Fernicola Stephen D.,de Vasconcellos Jaira F.,Zicari Sonia,Daniels Christopher,Dunn John C.,Dimtchev Alexander,Nesti Leon J.
Abstract
Abstract
Background
Multipotent progenitor cells have been harvested from different human tissues, including the bone marrow, adipose tissue, and umbilical cord blood. Previously, we identified a population of mesenchymal progenitor cells (MPCs) isolated from the traumatized muscle of patients undergoing reconstructive surgery following a war-related blast injury. These cells demonstrated the ability to differentiate into multiple mesenchymal lineages. While distal radius fractures from a civilian setting have a much lower injury mechanism (low-energy trauma), we hypothesized that debrided traumatized muscle near the fracture site would contain multipotent progenitor cells with the ability to differentiate and regenerate the injured tissue.
Methods
The traumatized muscle was debrided from the pronator quadratus in patients undergoing open reduction and internal fixation for a distal radius fracture at the Walter Reed National Military Medical Center. Using a previously described protocol for the isolation of MPCs from war-related extremity injuries, cells were harvested from the low-energy traumatized muscle samples and expanded in culture. Isolated cells were characterized by flow cytometry and q-RT-PCRs and induced to adipogenic, osteogenic, and chondrogenic differentiation. Downstream analyses consisted of lineage-specific staining and q-RT-PCR.
Results
Cells isolated from low-energy traumatized muscle samples were CD73+, CD90+, and CD105+ that are the characteristic of adult human mesenchymal stem cells. These cells expressed high levels of the stem cell markers OCT4 and NANOG 1-day after isolation, which was dramatically reduced over-time in monolayer culture. Following induction, lineage-specific markers were demonstrated by each specific staining and confirmed by gene expression analysis, demonstrating the ability of these cells to differentiate into adipogenic, osteogenic, and chondrogenic lineages.
Conclusions
Adult multipotent progenitor cells are an essential component for the success of regenerative medicine efforts. While MPCs have been isolated and characterized from severely traumatized muscle from high-energy injuries, here, we report that cells with similar characteristics and multipotential capacity have been isolated from the tissue that was exposed to low-energy, community trauma.
Funder
U.S. Army Medical Research Acquisition Activity
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献