Endometrial mesenchymal stem/stromal cells: The Enigma to code messages for generation of functionally active regulatory T cells

Author:

Aleahmad Mehdi,Bozorgmehr Mahmood,Nikoo Shohreh,Ghanavatinejad Alireza,Shokri Mohammad-Reza,Montazeri Samaneh,Shokri Fazel,Zarnani Amir-Hassan

Abstract

Abstract Background Regulatory T cells (Tregs) play an important role in fine-tuning of immune responses and are pivotal for a successful pregnancy. Recently, the importance of mesenchymal stem cells in regulation of immune responses in general and Tregs in particular has been highlighted. Here, we hypothesized that menstrual stromal/stem cells (MenSCs) contribute to uterine immune system regulation through induction of functionally active Tregs. Methods MenSCs were collected from 18 apparently healthy women and characterized. Bone marrow mesenchymal stem cells (BMSCs) served as a control. The effect of MenSCs on proliferation of anti-CD3/CD28-stimulated T CD4 + cells and generation of Tregs with or without pre-treatment with mitomycin C, IFN-γ and IL-1β was evaluated by flow cytometry. The potential role of IDO, PGE2, IL-6, IL-10, and TGF-β on proliferation of T CD4 + cells and generation of Tregs was assessed using blocking antibodies or agents. IDO activity was evaluated in MenSCs and BMSCs culture supernatants by a colorimetric assay. IL-10 and IFN-γ production in MenSCs-primed T CD4 + was measured using intracellular staining. To investigate the functional properties of Tregs induced by MenSCs, Treg cells were isolated and their functional property to inhibit proliferation of anti-CD3/CD28-stimulated PBMCs was assessed by flow cytometry. Results According to the results, proliferation of T CD4 + lymphocytes was enhanced in the presence of MenSCs, while pre-treatment of MenSCs with pro-inflammatory cytokines reversed this effect. PGE2 and IDO were the major players in MenSCs-induced T cell proliferation. Non-treated MenSCs decreased the frequency of Tregs, whereas after pre-treatment with IFN-γ and IL-1β, they induced functional Tregs with ability to inhibit the proliferation of anti-CD3/CD28-stimulated PBMCs. This effect was mediated through IL-6, IL-10, TGF-β and IDO. IFN-γ/IL-1β-treated MenSCs induced IL-10 and IFN-γ production in CD4 + T cells. Conclusion Collectively, these findings indicate that immunomodulatory impact of menstrual blood stem cells (MenSCs) on generation of Tregs and inhibition of T cells proliferation is largely dependent on pre-treatment with IFN-γ and IL-1β. This is the first report on immunomodulatory impact of MenSCs on Tregs and highlights the pivotal role of endometrial stem cells in regulation of local endometrial immune responses.

Funder

Tehran University of Medical Sciences and Health Services

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3