Author:
Yin Zhanhai,Wang Qi,Li Ye,Wei Hong,Shi Jianfeng,Li Ang
Abstract
Abstract
Background
Stem cells from human exfoliated deciduous teeth (SHED) have recently attracted attention as novel multipotential stem cell sources. However, their application is limited due to in vitro replicative senescence. Ectopic expression of telomerase reverse transcriptase (TERT) is a promising strategy for overcoming this replicative senescence. Nevertheless, its potential application and the phenotype as well as tumorigenicity have never been assessed in SHED.
Methods
TERT expression was stably restored in SHED (TERT-SHED) isolated from healthy children aged 6–8 years using lentiviral transduction with a puromycin selection marker. The expression of TERT was detected using reverse transcription polymerase chain reaction, Western blot and immunofluorescence. Surface markers of SHED were detected by flow cytometry. Enzyme-linked immunosorbent assay was used to assess senescence-associated β-galactosidase, while CCK-8 methods were used to examine the proliferation capacity of SHED and TERT-SHED at different passages. Moreover, multilineage differentiation, karyotype, colony formation in soft agar, and tumor formation in nude mice of SHED and TERT-SHED were also examined.
Results
Lentiviral transduction induced stable TERT expression even in SHED at the 40th passage. TERT-SHED showed robust proliferation capacity and low concentration of β-galactosidase. Although they had some different biomarkers than early passage SHED, TERT-SHED at late passage showed similar mutilineage differentiation as TERT at early passage. Moreover, TERT-SHED at late passage showed normal karyotype, no soft agar colony formation, and no tumor formation in nude mice.
Conclusions
TERT-immortalized SHED may be a promising resource for stem-cell therapy, although attention should be paid to the biological behavior of the cells.
Funder
Shaanxi Provincial Science and Technology Innovation Project co-ordination of Resources Oriented Industries of Key Technologies Project
Shaanxi Province Natural Science Basic Research
Fundamental Research Funds for the Central Universities of China, and National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献