Author:
Nuschke Austin,Rodrigues Melanie,Wells Albin W.,Sylakowski Kyle,Wells Alan
Abstract
Abstract
Background
Mesenchymal stem/multipotent stromal cells (MSCs) contribute to tissue repair but are challenged during wound healing when the blood supply is disrupted, thereby limiting nutrient delivery. Survival mechanisms against ‘starvation’ include autophagy, which we previously found to enhance differentiation efficiency. MSC response to models of in vitro nutrient deprivation are of great interest for improving MSC survival and therapeutic efficacy; however, the rate-limiting nutrients are unknown.
Methods
MSC responses to culture nutrient and/or serum deprivations were assessed through light microscopy, cell survival, and measurements of metabolic levels. Glucose uptake was determined through conditioned media analyses over 3 days of culture. The Seahorse XF24 Flux analysis system was used to determine oxygen consumption and extracellular acidification for glycolytic metabolism. MSC autophagic response to these conditions was assessed via immunoblots for LC3-I and LC3-II, markers of autophagosome turnover.
Results
We more closely examined limiting nutritional factors to MSC survival in vitro, finding that glucose is rapidly utilized/depleted whereas amino acids and other required nutrients were used sparingly. This finding concurred with metabolic analyses that showed a primarily glycolytic character to the MSCs at steady state. MSC autophagy, previously linked to MSC function through a unique accumulated autophagosome phenotype, also responded quickly to changes in glucose concentration, with drastic LC3-II changes within 24 h of glucose concentration shifts.
Conclusions
Our results demonstrated a rapid uptake of glucose in MSC cultures that was due to a highly glycolytic phenotype for the cells; MSC starvation with serum or other nutrients appears to have a less notable effect on the cells. These findings highlight the importance of glucose and glucose metabolism on MSC function. The conditions and cellular responses outlined here may be essential in modeling MSC nutrient deprivation.
Funder
National Institute of General Medical Sciences
National Institute of Biomedical Imaging and Bioengineering
National Cancer Institute
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献