Regulation of connective tissue growth factor expression by miR-133b for the treatment of renal interstitial fibrosis in aged mice with unilateral ureteral obstruction

Author:

Cao Dan,Wang Yuan,Zhang Yingjie,Zhang Yinping,Huang Qi,Yin Zhong,Cai Guangyan,Chen Xiangmei,Sun XuefengORCID

Abstract

Abstract Introduction Renal interstitial fibrosis, an important pathological feature of kidney aging and chronic renal failure, is regulated by mesenchymal stem cells (MSCs). We have previously demonstrated low expression of miR-133b in MSC-derived extracellular vesicles (MSC-EVs) in aged rats. However, miR-133b can mediate the inhibition of epithelial-mesenchymal transition (EMT) of renal tubules induced by transforming growth factor-β1 (TGF-β1). We investigated the effect of miR-133b for the treatment of geriatric renal interstitial fibrosis and evaluated its target genes. Methods We performed real-time polymerase chain reaction to detect miR-133b expression induced during EMT of HK2 cells by TGF-β1 at different concentrations (0, 6, 8, and 10 ng/mL) and at different time points (0, 24, 48, and 72 h). The target genes of miR-133b were validated using the dual-luciferase reporter assay. In vitro experiments were performed to evaluate mRNA and protein expression of miR-133b targets, E-cadherin, α-smooth muscle actin (SMA), fibronectin, and collagen 3A1 (Col3A1), in HK2 cells transfected with miR-133b under TGF-β1 stimulation. A 24-month-old unilateral ureteral obstruction (UUO) mouse model was established and injected with transfection reagent and miR-133b into the caudal vein. The target gene of miR-133b and other parameters mentioned above such as mRNA and protein expression levels and renal interstitial fibrosis were detected at 7 and 14 days. Results miR-133b expression gradually decreased with an increase in TGF-β1 concentration and treatment time, and the miR-133b mimic downregulated connective tissue growth factor (CTGF) expression. The dual-luciferase reporter assay confirmed CTGF as a direct target of miR-133b. Transfection of the miR-133b mimic inhibited TGF-β1-induced EMT of HK2 cells; this effect was reversed by CTGF overexpression. miRNA-133b expression significantly increased (approximately 70–100 times) in mouse kidney tissues after injection of the miRNA-133b overexpression complex, which significantly alleviated renal interstitial fibrosis in mice with UUO. Conclusion miR-133b exerted targeted inhibitory effects on CTGF expression, which consequently reduced TGF-β1-induced EMT of HK2 cells and renal interstitial fibrosis in aged mice with UUO.

Funder

The National Natural Science Foundation of China

Major State Basic Research Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3