Author:
Wu Junjie,Sun Yun,Block Travis J.,Marinkovic Milos,Zhang Zhi-Liang,Chen Richard,Yin Yixia,Song Juquan,Dean David D.,Lu Zhongding,Chen Xiao-Dong
Abstract
Abstract
Background
Umbilical cord blood (UCB) not only contains hematopoietic stem cells (HSCs), but also non-hematopoietic stem cells (NHSCs) that are able to differentiate into a number of distinct cell types. Based on studies published to date, the frequency of NHSCs in UCB is believed to be very low. However, the isolation of these cells is primarily based on their adhesion to tissue culture plastic surfaces.
Methods and results
In the current study, we demonstrate that this approach overlooks some of the extremely immature NHSCs because they lack the ability to adhere to plastic. Using a native extracellular matrix (ECM), produced by bone marrow (BM) stromal cells, the majority of the UCB-NHSCs attached within 4 h. The colony-forming unit fibroblast frequency of these cells was 1.5 × 104/108 mononuclear cells, which is at least 4000-fold greater than previously reported for UCB-NHSCs. The phenotype of these cells was fibroblast-like and different from those obtained by plastic adhesion; they formed embryonic body-like clusters that were OCT4-positive and expressed other human embryonic stem cell-related markers. Importantly, when implanted subcutaneously for 8 weeks into immunocompromised mice, these ECM-adherent and expanded NHSCs generated three germ layer-derived human tissues including muscle, fat, blood vessel, bone, gland, and nerve. Moreover, injection of these cells into muscle damaged by cryoinjury significantly accelerated muscle regeneration.
Conclusions
These results indicate that UCB may be a virtually unlimited source of NHSCs when combined with isolation and expansion on ECM. NHSCs may be a practical alternative to embryonic stem cells for a number of therapeutic applications.
Funder
U.S. Department of Veterans Affairs
University Research Council Grants, University of Texas Health Science Center at San Antonio
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献