The hepatocyte growth factor-expressing character is required for mesenchymal stem cells to protect the lung injured by lipopolysaccharide in vivo

Author:

Hu Shuling,Li Jinze,Xu Xiuping,Liu Airan,He Hongli,Xu Jingyuan,Chen Qihong,Liu Songqiao,Liu Ling,Qiu Haibo,Yang Yi

Abstract

Abstract Background Acute respiratory distress syndrome (ARDS) is a life-threatening condition in critically ill patients. Recently, we have found that mesenchymal stem cells (MSC) improved the permeability of human lung microvascular endothelial cells by secreting hepatocyte growth factor (HGF) in vitro. However, the properties and functions of MSC may change under complex circumstances in vivo. Here, we sought to determine the role of the HGF-expressing character of MSC in the therapeutic effects of MSC on ARDS in vivo. Methods MSC with HGF gene knockdown (MSC-ShHGF) were constructed using lentiviral transduction. The HGF mRNA and protein levels in MSC-ShHGF were detected using quantitative real-time polymerase chain reaction and Western blotting analysis, respectively. HGF levels in the MSC culture medium were measured by enzyme-linked immunosorbent assay (ELISA). Rats with ARDS induced by lipopolysaccharide received MSC infusion via the tail vein. After 1, 6, and 24 h, rats were sacrificed. MSC retention in the lung was assessed by immunohistochemical assay. The lung wet weight to body weight ratio (LWW/BW) and Evans blue dye extravasation were obtained to reflect lung permeability. The VE-cadherin was detected with inmmunofluorescence, and the lung endothelial cell apoptosis was assessed by TUNEL assay. The severity of lung injury was evaluated using histopathology. The cytokines and HGF levels in the lung were measured by ELISA. Results MSC-ShHGF with markedly lower HGF expression were successfully constructed. Treatment with MSC or MSC carrying green fluorescent protein (MSC-GFP) maintained HGF expression at relatively high levels in the lung at 24 h. MSC or MSC-GFP decreased the LWW/BW and the Evans Blue Dye extravasation, protected adherens junction VE-cadherin, and reduced the lung endothelial cell apoptosis. Furthermore, MSC or MSC-GFP reduced the inflammation and alleviated lung injury based on histopathology. However, HGF gene knockdown significantly decreased the HGF levels without any changes in the MSC retention in the lung, and diminished the protective effects of MSC on the injured lung, indicating the therapeutic effects of MSC on ARDS were partly associated with the HGF-expressing character of MSC. Conclusions MSC restores lung permeability and lung injury in part by maintaining HGF levels in the lung and the HGF-expressing character is required for MSC to protect the injured lung.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3