Intratunical injection of rat-derived bone marrow mesenchymal stem cells prevents fibrosis and is associated with increased Smad7 expression in a rat model of Peyronie’s disease

Author:

Wang Wenting,Ding Weifang,Zhang Xuebao,Wu Shuang,Yu Tianxi,Cui Xin,Xie Yaqi,Yang Diandong,Lin ChunhuaORCID

Abstract

Abstract Objective Peyronie’s disease (PD) is a fibrotic disorder of the penis, but effective treatments are lacking. Here, we observed the effects of rat-derived bone marrow mesenchymal stem cells (BMSCs) injection in the active phase and chronic phase in a rat model of PD, and the possible mechanism was analysed with fibroblasts derived from rat penile tunica albuginea (TA). Methods Thirty-two male Sprague-Dawley rats were divided into four groups. In sham group, the rats were injected with 50 µL of vehicle. In the PD group, the rats were injected with 50 µg TGF-β1. In the PD + BMSCs early treatment group, the rats were injected with 50 µg TGF-β1 and injected with 1 × 106 BMSCs after 1 day. In the PD + BMSCs late treatment group, the rats were injected with 50 µg TGF-β1 and injected with 1 × 106 BMSCs after 28 days. Twenty-seven days after the last injection, the erectile function of the rats was measured, and then, penile fibrosis was analysed by histology and western blot. In vitro, fibroblasts derived from rat penile TA were used to identify a possible antifibrotic mechanism of BMSCs, and a Smad7 expression vector was used as a positive control. Fibroblasts were pretreated with the Smad7 expression vector or BMSCs for 48 h and then activated with 10 ng/mL TGF-β1 for 24 h. Cells viability was assessed, and Smad7, collagen 3, elastase-2B and osteopontin expression levels were analysed by immunofluorescence and western blot. Furthermore, fibroblasts were transfected with Smad7 siRNA or scramble control to observe whether the effects of BMSCs could be offset. Results Erectile function obviously improved, and fibrosis of penile TA was prevented after BMSCs treatment compared with that in the rats with PD. Furthermore, the effects of BMSCs treatment in the active phase were better than those in the chronic phase. After cocultured with BMSCs, cell viability was not affected, Smad7 expression was upregulated, and collagen 3, elastase-2B and osteopontin levels were decreased in the TGF-β1-treated fibroblasts. After transfection with Smad7 siRNA, the antifibrotic effects of BMSCs were offset. Conclusions The antifibrotic effects of BMSCs treatment in the active phase of the PD rat model were better than those in the chronic phase. A possible mechanism of BMSCs treatment was related to increased Smad7 expression, suggesting a possible effective and safe procedure for the treatment of PD.

Funder

Taishan scholar program

Natural Science Foundation of Shandong Province

Yantai Key Research and Development Project

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3