Cell-free fat extract attenuates osteoarthritis via chondrocytes regeneration and macrophages immunomodulation

Author:

Jia Zhuoxuan,Kang Bijun,Cai Yizuo,Chen Chingyu,Yu Zheyuan,Li WeiORCID,Zhang Wenjie

Abstract

Abstract Background The prevalence of osteoarthritis (OA) is increasing, yet clinically effective and economical treatments are unavailable. We have previously proposed a cell-free fat extract (CEFFE) containing multiple cytokines, which possessed antiapoptotic, anti-oxidative, and proliferation promotion functions, as a “cell-free” strategy. In this study, we aimed to evaluate the therapeutic effect of CEFFE in vivo and in vitro. Methods In vivo study, sodium iodoacetate-induced OA rats were treated with CEFFE by intra-articular injections for 8 weeks. Behavioral experiments were performed every two weeks. Histological analyses, anti-type II collagen, and toluidine staining provided structural evaluation. Macrophage infiltration was assessed by anti-CD68 and anti-CD206 staining. In vitro study, the effect of CEFFE on macrophage polarization and secretory factors was evaluated by flow cytometry, immunofluorescence, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The effect of CEFFE on cartilage regeneration was accessed by cell counting kit-8 assay and qRT-PCR. The generation of reactive oxygen species (ROS) and levels of ROS-related enzymes were investigated by qRT-PCR and western blotting. Results In rat models with sodium iodoacetate (MIA)-induced OA, CEFFE increased claw retraction pressure while decreasing bipedal pressure in a dose-dependent manner. Moreover, CEFFE promoted cartilage structure restoration and increased the proportion of CD206+ macrophages in the synovium. In vitro, CEFFE decreased the proportion of CD86+ cells and reduced the expression of pro-inflammatory factors in LPS + IFN-γ induced Raw 264.7. In addition, CEFFE decreased the expression of interleukin-6 and ADAMTs-5 and promoted the expression of SOX-9 in mouse primary chondrocytes. Besides, CEFFE reduced the intracellular levels of reactive oxygen species in both in vitro models through regulating ROS-related enzymes. Conclusions CEFFE inhibits the progression of OA by promoting cartilage regeneration and limiting low-grade joint inflammation. Graphical abstract

Funder

Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3