Abstract
Abstract
Background
Down syndrome (DS) clinical multisystem condition is generally considered the result of a genetic imbalance generated by the extra copy of chromosome 21. Recent discoveries, however, demonstrate that the molecular mechanisms activated in DS compared to euploid individuals are more complex than previously thought. Here, we utilize mesenchymal stem cells from chorionic villi (CV) to uncover the role of comprehensive functional genomics-based understanding of DS complexity.
Methods
Next-generation sequencing coupled with bioinformatic analysis was performed on CV obtained from women carrying fetuses with DS (DS-CV) to reveal specific genome-wide transcriptional changes compared to their euploid counterparts. Functional assays were carried out to confirm the biological processes identified as enriched in DS-CV compared to CV (i.e., cell cycle, proliferation features, immunosuppression and ROS production).
Results
Genes located on chromosomes other than the canonical 21 (Ch. 2, 6 and 22) are responsible for the impairment of life-essential pathways, including cell cycle regulation, innate immune response and reaction to external stimuli were found to be differentially expressed in DS-CV. Experimental validation confirmed the key role of the biological pathways regulated by those genes in the etiology of such a multisystem condition.
Conclusions
NGS dataset generated in this study highlights the compromised functionality in the proliferative rate and in the innate response of DS-associated clinical conditions and identifies DS-CV as suitable tools for the development of specifically tailored, personalized intervention modalities.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)
Reference76 articles.
1. Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S. Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet. 2004;5(10):725–38.
2. Antonarakis SE. 10 years of genomics, chromosome 21, and Down syndrome. Genomics. 1998;51(1):1–16.
3. Lejeune J, Gauthier M, Turpin R. Human chromosomes in tissue cultures. C R Hebd Seances Acad Sci. 1959;248(4):602–3.
4. Ross JA, Spector LG, Robison LL, Olshan AF. Epidemiology of leukemia in children with Down syndrome. Pediatr Blood Cancer. 2005;44(1):8–12.
5. Liu B, Filippi S, Roy A, Roberts I. Stem and progenitor cell dysfunction in human trisomies. EMBO Rep. 2015;16(1):44–62.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献