Abstract
Abstract
Background
Carriers of persistent asymptomatic Plasmodium falciparum infections constitute an infectious reservoir that maintains malaria transmission. Understanding the extent of carriage and characteristics of carriers specific to endemic areas could guide use of interventions to reduce infectious reservoir.
Methods
In eastern Gambia, an all-age cohort from four villages was followed up from 2012 to 2016. Each year, cross-sectional surveys were conducted at the end of the malaria transmission season (January) and just before the start of the next one (June) to determine asymptomatic P. falciparum carriage. Passive case detection was conducted during each transmission season (August to January) to determine incidence of clinical malaria. Association between carriage at the end of the season and at start of the next one and the risk factors for this were assessed. Effect of carriage before start of the season on risk of clinical malaria during the season was also examined.
Results
A total of 1403 individuals—1154 from a semi-urban village and 249 from three rural villages were enrolled; median age was 12 years (interquartile range [IQR] 6, 30) and 12 years (IQR 7, 27) respectively. In adjusted analysis, asymptomatic P. falciparum carriage at the end of a transmission season and carriage just before start of the next one were strongly associated (adjusted odds ratio [aOR] = 19.99; 95% CI 12.57–31.77, p < 0.001). The odds of persistent carriage (i.e. infected both in January and in June) were higher in rural villages (aOR = 13.0; 95% CI 6.33–26.88, p < 0.001) and in children aged 5–15 years (aOR = 5.03; 95% CI 2.47–10.23, p = < 0.001). In the rural villages, carriage before start of the season was associated with a lower risk of clinical malaria during the season (incidence risk ratio [IRR] 0.48, 95% CI 0.27–0.81, p = 0.007).
Conclusions
Asymptomatic P. falciparum carriage at the end of a transmission season strongly predicted carriage just before start of the next one. Interventions that clear persistent asymptomatic infections when targeted at the subpopulation with high risk of carriage may reduce the infectious reservoir responsible for launching seasonal transmission.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference45 articles.
1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.
2. WHO. World malaria report 2020: 20 years of global progress and challenges. Geneva: World Health Organization; 2020. https://www.who.int/publications/i/item/9789240015791. Accessed 24 Jan 2023.
3. Cotter C, Sturrock HJ, Hsiang MS, Liu J, Phillips AA, Hwang J, et al. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013;382:900–11.
4. Keegan LT, Dushoff J. Population-level effects of clinical immunity to malaria. BMC Infect Dis. 2013;13:428.
5. Bjorkman A, Morris U. Why Asymptomatic Plasmodium falciparum infections are common in low-transmission settings. Trends Parasitol. 2020;36:898–905.