Fine-scale mapping of urban malaria exposure under data scarcity: an approach centred on vector ecology

Author:

Vanhuysse Sabine,Diédhiou Seynabou Mocote,Grippa Taïs,Georganos Stefanos,Konaté Lassana,Niang El Hadji Amadou,Wolff Eléonore

Abstract

Abstract Background Although malaria transmission has experienced an overall decline in sub-Saharan Africa, urban malaria is now considered an emerging health issue due to rapid and uncontrolled urbanization and the adaptation of vectors to urban environments. Fine-scale hazard and exposure maps are required to support evidence-based policies and targeted interventions, but data-driven predictive spatial modelling is hindered by gaps in epidemiological and entomological data. A knowledge-based geospatial framework is proposed for mapping the heterogeneity of urban malaria hazard and exposure under data scarcity. It builds on proven geospatial methods, implements open-source algorithms, and relies heavily on vector ecology knowledge and the involvement of local experts. Methods A workflow for producing fine-scale maps was systematized, and most processing steps were automated. The method was evaluated through its application to the metropolitan area of Dakar, Senegal, where urban transmission has long been confirmed. Urban malaria exposure was defined as the contact risk between adult Anopheles vectors (the hazard) and urban population and accounted for socioeconomic vulnerability by including the dimension of urban deprivation that is reflected in the morphology of the built-up fabric. Larval habitat suitability was mapped through a deductive geospatial approach involving the participation of experts with a strong background in vector ecology and validated with existing geolocated entomological data. Adult vector habitat suitability was derived through a similar process, based on dispersal from suitable breeding site locations. The resulting hazard map was combined with a population density map to generate a gridded urban malaria exposure map at a spatial resolution of 100 m. Results The identification of key criteria influencing vector habitat suitability, their translation into geospatial layers, and the assessment of their relative importance are major outcomes of the study that can serve as a basis for replication in other sub-Saharan African cities. Quantitative validation of the larval habitat suitability map demonstrates the reliable performance of the deductive approach, and the added value of including local vector ecology experts in the process. The patterns displayed in the hazard and exposure maps reflect the high degree of heterogeneity that exists throughout the city of Dakar and its suburbs, due not only to the influence of environmental factors, but also to urban deprivation. Conclusions This study is an effort to bring geospatial research output closer to effective support tools for local stakeholders and decision makers. Its major contributions are the identification of a broad set of criteria related to vector ecology and the systematization of the workflow for producing fine-scale maps. In a context of epidemiological and entomological data scarcity, vector ecology knowledge is key for mapping urban malaria exposure. An application of the framework to Dakar showed its potential in this regard. Fine-grained heterogeneity was revealed by the output maps, and besides the influence of environmental factors, the strong links between urban malaria and deprivation were also highlighted.

Funder

Belgian Federal Science Policy Office

University Foundation,Belgium

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3