Characterisation of plasmodial transketolases and identification of potential inhibitors: an in silico study

Author:

Boateng Rita AfriyieORCID,Tastan Bishop ÖzlemORCID,Musyoka Thommas MutemiORCID

Abstract

Abstract Background Plasmodial transketolase (PTKT) enzyme is one of the novel pharmacological targets being explored as potential anti-malarial drug target due to its functional role and low sequence identity to the human enzyme. Despite this, features contributing to such have not been exploited for anti-malarial drug design. Additionally, there are no anti-malarial drugs targeting PTKTs whereas the broad activity of these inhibitors against PTKTs from other Plasmodium spp. is yet to be reported. This study characterises different PTKTs [Plasmodium falciparum (PfTKT), Plasmodium vivax (PvTKT), Plasmodium ovale (PoTKT), Plasmodium malariae (PmTKT) and Plasmodium knowlesi (PkTKT) and the human homolog (HsTKT)] to identify key sequence and structural based differences as well as the identification of selective potential inhibitors against PTKTs. Methods A sequence-based study was carried out using multiple sequence alignment, phylogenetic tree calculations and motif discovery analysis. Additionally, TKT models of PfTKT, PmTKT, PoTKT, PmTKT and PkTKT were modelled using the Saccharomyces cerevisiae TKT structure as template. Based on the modelled structures, molecular docking using 623 South African natural compounds was done. The stability, conformational changes and detailed interactions of selected compounds were accessed viz all-atom molecular dynamics (MD) simulations and binding free energy (BFE) calculations. Results Sequence alignment, evolutionary and motif analyses revealed key differences between plasmodial and the human TKTs. High quality homodimeric three-dimensional PTKTs structures were constructed. Molecular docking results identified three compounds (SANC00107, SANC00411 and SANC00620) which selectively bind in the active site of all PTKTs with the lowest (better) binding affinity ≤ − 8.5 kcal/mol. MD simulations of ligand-bound systems showed stable fluctuations upon ligand binding. In all systems, ligands bind stably throughout the simulation and form crucial interactions with key active site residues. Simulations of selected compounds in complex with human TKT showed that ligands exited their binding sites at different time steps. BFE of protein–ligand complexes showed key residues involved in binding. Conclusions This study highlights significant differences between plasmodial and human TKTs and may provide valuable information for the development of novel anti-malarial inhibitors. Identified compounds may provide a starting point in the rational design of PTKT inhibitors and analogues based on these scaffolds.

Funder

DELTAS Africa Initiative under Wellcome Trust

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3