Residual bioefficacy of attractive targeted sugar bait stations targeting malaria vectors during seasonal deployment in Western Province of Zambia
-
Published:2024-05-29
Issue:1
Volume:23
Page:
-
ISSN:1475-2875
-
Container-title:Malaria Journal
-
language:en
-
Short-container-title:Malar J
Author:
Mwaanga Gift,Ford Jacob,Yukich Joshua,Chanda Benjamin,Ashton Ruth A.,Chanda Javan,Munsanje Buster,Muntanga Emliny,Mulota Malon,Simuyandi Christine,Mulala Boyd,Simubali Limonty,Saili Kochelani,Simulundu Edgar,Miller John,Hamainza Busiku,Orange Erica,Wagman Joseph,Mburu Monicah M.,Harris Angela F.,Entwistle Julian,Littrell Megan
Abstract
Abstract
Background
The primary vector control interventions in Zambia are long-lasting insecticidal nets and indoor residual spraying. Challenges with these interventions include insecticide resistance and the outdoor biting and resting behaviours of many Anopheles mosquitoes. Therefore, new vector control tools targeting additional mosquito behaviours are needed to interrupt transmission. Attractive targeted sugar bait (ATSB) stations, which exploit the sugar feeding behaviours of mosquitoes, may help in this role. This study evaluated the residual laboratory bioefficacy of Westham prototype ATSB® Sarabi v.1.2.1 Bait Station (Westham Ltd., Hod-Hasharon, Israel) in killing malaria vectors in Western Province, Zambia, during the first year of a large cluster randomized phase-III trial (Clinical Trials.gov Identifier: NCT04800055).
Methods
This was a repeat cross-sectional study conducted within three districts, Nkeyema, Kaoma, and Luampa, in Western Province, Zambia. The study was conducted in 12 intervention clusters among the 70 trial clusters (35 interventions, 35 controls) between December 2021 and June 2022. Twelve undamaged bait stations installed on the outer walls of households were collected monthly (one per cluster per month) for bioassays utilizing adult female and male Anopheles gambiae sensu stricto (Kisumu strain) mosquitoes from a laboratory colony.
Results
A total of 84 field-deployed ATSB stations were collected, and 71 ultimately met the study inclusion criteria for remaining in good condition. Field-deployed stations that remained in good condition (intact, non-depleted of bait, and free of dirt as well as mold) retained high levels of bioefficacy (mean induced mortality of 95.3% in males, 71.3% in females, 83.9% combined total) over seven months in the field but did induce lower mortality rates than non-deployed ATSB stations (mean induced mortality of 96.4% in males, 87.0% in females, 91.4% combined total). There was relatively little variation in corrected mortality rates between monthly rounds for those ATSB stations that had been deployed to the field.
Conclusion
While field-deployed ATSB stations induced lower mortality rates than non-deployed ATSB stations, these stations nonetheless retained relatively high and stable levels of bioefficacy across the 7-month malaria transmission season. While overall mean mosquito mortality rates exceeded 80%, mean mortality rates for females were 24 percentage points lower than among males and these differences merit attention and further evaluation in future studies. The duration of deployment was not associated with lower bioefficacy. Westham prototype ATSB stations can still retain bioefficacy even after deployment in the field for 7 months, provided they do not meet predetermined criteria for replacement.
Funder
Innovative Vector Control Consortium (IVCC), UK
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Alonso PL, Lindsay SW, Armstrong Schellenberg JR, Keita K, Gomez P, Shenton FC, et al. A malaria control trial using insecticide-treated bed nets and targeted chemoprophylaxis in a rural area of The Gambia, West Africa. 6. The impact of the interventions on mortality and morbidity from malaria. Trans R Soc Trop Med Hyg. 1993;87(Suppl 2):37–44. 2. D’Alessandro U, Olaleye BO, McGuire W, Langerock P, Bennett S, Aikins MK, et al. Mortality and morbidity from malaria in Gambian children after introduction of an impregnated bednet programme. Lancet. 1995;345:479–83. 3. Cheng H, Yang W, Kang W, Liu C. Large-scale spraying of bednets to control mosquito vectors and malaria in Sichuan, China. Bull World Health Organ. 1995;73:321–8. 4. Binka FN, Kubaje A, Adjuik M, Williams LA, Lengeler C, Maude GH, et al. Impact of permethrin impregnated bednets on child mortality in Kassena-Nankana district, Ghana: a randomized controlled trial. Trop Med Int Health. 1996;1:147–54. 5. Nevill CG, Some ES, Mung’ala VO, Mutemi W, New L, Marsh K, Lengeler C, Snow RW. Insecticide-treated bednets reduce mortality and severe morbidity from malaria among children on the Kenyan coast. Trop Med Int Health. 1996;1:139–46.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|