Abstract
Abstract
Background
It is assumed that malaria vectors feed on locally available nectar sources to obtain energy. Sugar feeding is energetically critical for the Anopheles male swarming and mating activities. However, little is known about the impact of local nectar feeding on male physiological development and its consequences on male mosquito life traits in the malaria control context. This study aimed to evaluate the influence of local fruit juices on the life traits of males Anopheles coluzzii.
Methods
Swarming characteristics (number of males in swarm, number of mating pairs, and swarm duration) in semi-field conditions; mating rate and longevity in a laboratory setting were compared between males An. coluzzii fed exclusively with mango, papaya or banana juices. The trophic preference was investigated in semi-field conditions.
Results
The results of this study showed that in the laboratory, mosquitoes fed with papaya juices lived on average longer (10 days) than those fed with banana or mango juices (5 days) and had higher a mating rate (53%) than those fed with banana juice (40%). In the semi-field, the swarm size of mosquitoes fed with banana juice (85 males) was larger than that of mosquitoes fed with mango juice (60 males). The number of mating pairs formed from banana-fed male swarms (17 mating pairs) was higher than that formed from mango-fed male swarm (8 mating pairs). There was no difference in swarming duration between male treatments. Male mosquitoes had a preference for papaya and banana juices.
Conclusions
The results indicate that the origin of plant-derived feeding is an important factor in the survival and reproduction of mosquitoes. This calls for further investigations of chemical contents of nectars and their impact on the physiological development of mosquitoes.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference46 articles.
1. WHO. World Malaria Report 2019. Geneva: World Health Organization; 2019.
2. Aultman KS, Gottlieb M, Giovanni MY, Fauci AS. Anopheles gambiae genome: completing the malaria triad. Science. 2002;298:13.
3. Saeed IE, Ahmed ES. Determinants of acquiring malaria among displaced people in Khartoum state Sudan. East Mediterr Health J. 2003;9:581–92.
4. Asidi A, N’Guessan R, Akogbeto M, Curtis C, Rowland M. Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes. Benin. Emerg Infect Dis. 2012;18:1101–6.
5. Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献