Diagnostic accuracy of an automated microscope solution (miLab™) in detecting malaria parasites in symptomatic patients at point-of-care in Sudan: a case–control study

Author:

Hamid Muzamil M. Abdel,Mohamed Abdelrahim O.,Mohammed Fayad O.,Elaagip Arwa,Mustafa Sayed A.,Elfaki Tarig,Jebreel Waleed M. A.,Albsheer Musab M.,Dittrich Sabine,Owusu Ewurama D. A.,Yerlikaya Seda

Abstract

Abstract Background Microscopic detection of malaria parasites is labour-intensive, time-consuming, and expertise-demanding. Moreover, the slide interpretation is highly dependent on the staining technique and the technician’s expertise. Therefore, there is a growing interest in next-generation, fully- or semi-integrated microscopes that can improve slide preparation and examination. This study aimed to evaluate the clinical performance of miLab™ (Noul Inc., Republic of Korea), a fully-integrated automated microscopy device for the detection of malaria parasites in symptomatic patients at point-of-care in Sudan. Methods This was a prospective, case–control diagnostic accuracy study conducted in primary health care facilities in rural Khartoum, Sudan in 2020. According to the outcomes of routine on-site microscopy testing, 100 malaria-positive and 90 malaria-negative patients who presented at the health facility and were 5 years of age or older were enrolled consecutively. All consenting patients underwent miLab™ testing and received a negative or suspected result. For the primary analysis, the suspected results were regarded as positive (automated mode). For the secondary analysis, the operator reviewed the suspected results and categorized them as either negative or positive (corrected mode). Nested polymerase chain reaction (PCR) was used as the reference standard, and expert light microscopy as the comparator. Results Out of the 190 patients, malaria diagnosis was confirmed by PCR in 112 and excluded in 78. The sensitivity of miLab™ was 91.1% (95% confidence interval [CI] 84.2–95.6%) and the specificity was 66.7% (95% Cl 55.1–67.7%) in the automated mode. The specificity increased to 96.2% (95% Cl 89.6–99.2%), with operator intervention in the corrected mode. Concordance of miLab with expert microscopy was substantial (kappa 0.65 [95% CI 0.54–0.76]) in the automated mode, but almost perfect (kappa 0.97 [95% CI 0.95–0.99]) in the corrected mode. A mean difference of 0.359 was found in the Bland–Altman analysis of the agreement between expert microscopy and miLab™ for quantifying parasite counts. Conclusion When used in a clinical context, miLab™ demonstrated high sensitivity but low specificity. Expert intervention was shown to be required to improve the device’s specificity in its current version. miLab™ in the corrected mode performed similar to expert microscopy. Before clinical application, more refinement is needed to ensure full workflow automation and eliminate human intervention. Trial registration ClinicalTrials.gov: NCT04558515

Funder

This study was funded by the Australian Government, Department for Foreign Affairs and Trade, as part of the FIND Malaria Innovation Platform Project.

Publisher

Springer Science and Business Media LLC

Reference42 articles.

1. WHO. World malaria report 2023. Geneva, World Health Organization, 2023. https://www.who.int/publications/i/item/9789240086173.

2. Malik E, Khalafalla O. Malaria in Sudan: past, present and the future. Gezira J Health Sci. 2004;1:47–53.

3. Nur E. The impact of malaria on labour use and efficiency in the Sudan. Soc Sci Med. 1993;37:1115–9.

4. Fleischer B. 100 years ago: Giemsa’s solution for staining of plasmodia. Trop Med Int Health. 2004;9:755–6.

5. Payne D. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull World Health Organ. 1988;66:621–6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3