Author:
Abate Andargie,Bouyssou Isabelle,Mabilotte Solenne,Doderer-Lang Cecile,Dembele Laurent,Menard Didier,Golassa Lemu
Abstract
Abstract
Background
The increase in detections of Plasmodium vivax infection in Duffy-negative individuals in Africa has challenged the dogma establishing the unique P. vivax Duffy Binding Protein-Duffy antigen receptor for chemokines (PvDBP-DARC) pathway used by P. vivax merozoites to invade reticulocytes. Information on the impact of Duffy antigen polymorphisms on the epidemiology of P. vivax malaria remains elusive. The objective of this study was to determine the distribution of asexual parasitaemia of P. vivax according to the Duffy antigen polymorphisms in Ethiopia.
Methods
DNA was extracted from dried blood spots (DBS) collected from prospectively recruited 138 P. vivax-infected patients from health centres. The identification and estimation of P. vivax asexual parasitaemia were performed by microscopic examination and quantitative real-time polymerase chain reaction (PCR). Duffy genotyping was conducted by DNA sequencing in a total of 138 P.vivax infected samples.
Results
The proportion of Duffy-negatives (FY*BES/FY*BES) in P. vivax infected patients was 2.9% (4/138). Duffy genotype FY*B/FY*BES (48.6%) was the most common, followed by FY*A/FY*BES genotype (25.4%). In one patient, the FY*02 W.01/FY*02 N.01 genotype conferring a weak expression of the Fyb antigen was observed. All P.vivax infected Duffy-negative patients showed low asexual parasitaemia (≤ 110 parasites/µL). The median P. vivax parasitaemia in Duffy-negative patients (53 parasites/µL) was significantly lower than those found in homozygous and heterozygous individuals (P < 0.0001).
Conclusion
Plasmodium vivax in Duffy-negative patients shows invariably low asexual parasitaemia. This finding suggests that the pathway used by P. vivax to invade Duffy-negative reticulocytes is much less efficient than that used in Duffy-positives. Moreover, the low asexual parasitaemia observed in Duffy-negative individuals could constitute an ‘undetected silent reservoir', thus likely delaying the elimination of vivax malaria in Ethiopia.
Funder
The Bill and Melinda Gates Foundation
European and Developing Countries Clinical Trials Partnership
Malaria Genetics and Resistance Unit, Department of Parasites and Insect Vectors of Pasteur Institute, Paris, France
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference46 articles.
1. WHO. World malaria report 2021. Geneva: World Health Organization; 2021.
2. Oboh MA, Oyebola KM, Idowu ET, Badiane AS, Otubanjo OA, Ndiaye D. Rising report of Plasmodium vivax in sub-Saharan Africa: implications for malaria elimination agenda. Sci Afr. 2020;10: e00596.
3. Auburn S, Cheng Q, Marfurt J, Price RN. The changing epidemiology of Plasmodium vivax: insights from conventional and novel surveillance tools. PLoS Med. 2021;18: e1003560.
4. Tadesse F, Fogarty AW, Deressa W. Prevalence and associated risk factors of malaria among adults in East Shewa Zone of Oromia Regional State, Ethiopia: a cross-sectional study. BMC Public Health. 2018;18:25.
5. Golassa L, White MT. Population-level estimates of the proportion of Plasmodium vivax blood-stage infections attributable to relapses among febrile patients attending Adama Malaria Diagnostic Centre, East Shoa Zone, Oromia, Ethiopia. Malar J. 2017;16:301.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献