Space-time modelling of monthly malaria incidence for seasonal associated drivers and early epidemic detection in Southern Ethiopia

Author:

Kitawa Yonas Shuke,Asfaw Zeytu Gashaw

Abstract

Abstract Background Although Ethiopia has made great strides in recent years to reduce the threat of malaria, the disease remains a significant issue in most districts of the country. It constantly disappears in parts of the areas before reappearing in others with erratic transmission rates. Thus, developing a malaria epidemic early warning system is important to support the prevention and control of the incidence. Methods Space-time malaria risk mapping is essential to monitor and evaluate priority zones, refocus intervention, and enable planning for future health targets. From August 2013 to May 2019, the researcher considered an aggregated count of genus Plasmodium falciparum from 149 districts in Southern Ethiopia. Afterwards, a malaria epidemic early warning system was developed using model-based geostatistics, which helped to chart the disease’s spread and future management. Results Risk factors like precipitation, temperature, humidity, and nighttime light are significantly associated with malaria with different rates across the districts. Districts in the southwest, including Selamago, Bero, and Hamer, had higher rates of malaria risk, whereas in the south and centre like Arbaminch and Hawassa had moderate rates. The distribution is inconsistent and varies across time and space with the seasons. Conclusion Despite the importance of spatial correlation in disease risk mapping, it may occasionally be a good idea to generate epidemic early warning independently in each district to get a quick picture of disease risk. A system like this is essential for spotting numerous inconsistencies in lower administrative levels early enough to take corrective action before outbreaks arise.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3