Author:
Hollingsworth Brandon D.,Sandborn Hilary,Baguma Emmanuel,Ayebare Emmanuel,Ntaro Moses,Mulogo Edgar M.,Boyce Ross M.
Abstract
Abstract
Background
Malaria risk is not uniform across relatively small geographic areas, such as within a village. This heterogeneity in risk is associated with factors including demographic characteristics, individual behaviours, home construction, and environmental conditions, the importance of which varies by setting, making prediction difficult. This study attempted to compare the ability of statistical models to predict malaria risk at the household level using either (i) free easily-obtained remotely-sensed data or (ii) results from a resource-intensive household survey.
Methods
The results of a household malaria survey conducted in 3 villages in western Uganda were combined with remotely-sensed environmental data to develop predictive models of two outcomes of interest (1) a positive ultrasensitive rapid diagnostic test (uRDT) and (2) inpatient admission for malaria within the last year. Generalized additive models were fit to each result using factors from the remotely-sensed data, the household survey, or a combination of both. Using a cross-validation approach, each model’s ability to predict malaria risk for out-of-sample households (OOS) and villages (OOV) was evaluated.
Results
Models fit using only environmental variables provided a better fit and higher OOS predictive power for uRDT result (AIC = 362, AUC = 0.736) and inpatient admission (AIC = 623, AUC = 0.672) compared to models using household variables (uRDT AIC = 376, Admission AIC = 644, uRDT AUC = 0.667, Admission AUC = 0.653). Combining the datasets did not result in a better fit or higher OOS predictive power for uRDT results (AIC = 367, AUC = 0.671), but did for inpatient admission (AIC = 615, AUC = 0.683). Household factors performed best when predicting OOV uRDT results (AUC = 0.596) and inpatient admission (AUC = 0.553), but not much better than a random classifier.
Conclusions
These results suggest that residual malaria risk is driven more by the external environment than home construction within the study area, possibly due to transmission regularly occurring outside of the home. Additionally, they suggest that when predicting malaria risk the benefit may not outweigh the high costs of attaining detailed information on household predictors. Instead, using remotely-sensed data provides an equally effective, cost-efficient alternative.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference50 articles.
1. WHO. World Malaria Report 2021. Geneva: World Health Organization; 2021.
2. Sangbakembi-Ngounou C, Costantini C, Longo-Pendy NM, Ngoagouni C, Akone-Ella O, Rahola N, et al. Diurnal biting of malaria mosquitoes in the Central African Republic indicates residual transmission may be “out of control.” Proc Natl Acad Sci USA. 2022;119: e2104282119.
3. Ojuka P, Boum Y, Denoeud-Ndam L, Nabasumba C, Muller Y, Okia M, et al. Early biting and insecticide resistance in the malaria vector Anopheles might compromise the effectiveness of vector control intervention in Southwestern Uganda. Malar J. 2015;14:148.
4. Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, et al. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island. Equatorial Guinea Malar J. 2011;10:184.
5. Bayoh MN, Walker ED, Kosgei J, Ombok M, Olang GB, et al. Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. Parasit Vectors. 2014;7:380.