Patient variability in the blood-stage dynamics of Plasmodium falciparum captured by clustering historical data

Author:

Masserey Thiery,Penny Melissa A.,Lee Tamsin E.

Abstract

Abstract Background Mathematical models provide an understanding of the dynamics of a Plasmodium falciparum blood-stage infection (within-host models), and can predict the impact of control strategies that affect the blood-stage of malaria. However, the dynamics of P. falciparum blood-stage infections are highly variable between individuals. Within-host models use different techniques to capture this inter-individual variation. This struggle may be unnecessary because patients can be clustered according to similar key within-host dynamics. This study aimed to identify clusters of patients with similar parasitaemia profiles so that future mathematical models can include an improved understanding of within-host variation. Methods Patients’ parasitaemia data were analyzed to identify (i) clusters of patients (from 35 patients) that have a similar overall parasitaemia profile and (ii) clusters of patients (from 100 patients) that have a similar first wave of parasitaemia. For each cluster analysis, patients were clustered based on key features which previous models used to summarize parasitaemia dynamics. The clustering analyses were performed using a finite mixture model. The centroid values of the clusters were used to parameterize two established within-host models to generate parasitaemia profiles. These profiles (that used the novel centroid parameterization) were compared with profiles that used individual-specific parameterization (as in the original models), as well as profiles that ignored individual variation (using overall means for parameterization). Results To capture the variation of within-host dynamics, when studying the overall parasitaemia profile, two clusters efficiently grouped patients based on their infection length and the height of the first parasitaemia peak. When studying the first wave of parasitaemia, five clusters efficiently grouped patients based on the height of the peak and the speed of the clearance following the peak of parasitaemia. The clusters were based on features that summarize the strength of patient innate and adaptive immune responses. Parameterizing previous within host-models based on cluster centroid values accurately predict individual patient parasitaemia profiles. Conclusion This study confirms that patients have personalized immune responses, which explains the variation of parasitaemia dynamics. Clustering can guide the optimal inclusion of within-host variation in future studies, and inform the design and parameterization of population-based models.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

HORIZON EUROPE European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3