Agent-based modelling of complex factors impacting malaria prevalence

Author:

Amadi MiracleORCID,Shcherbacheva Anna,Haario Heikki

Abstract

Abstract Background Increasingly complex models have been developed to characterize the transmission dynamics of malaria. The multiplicity of malaria transmission factors calls for a realistic modelling approach that incorporates various complex factors such as the effect of control measures, behavioural impacts of the parasites to the vector, or socio-economic variables. Indeed, the crucial impact of household size in eliminating malaria has been emphasized in previous studies. However, increasing complexity also increases the difficulty of calibrating model parameters. Moreover, despite the availability of much field data, a common pitfall in malaria transmission modelling is to obtain data that could be directly used for model calibration. Methods In this work, an approach that provides a way to combine in situ field data with the parameters of malaria transmission models is presented. This is achieved by agent-based stochastic simulations, initially calibrated with hut-level experimental data. The simulation results provide synthetic data for regression analysis that enable the calibration of key parameters of classical models, such as biting rates and vector mortality. In lieu of developing complex dynamical models, the approach is demonstrated using most classical malaria models, but with the model parameters calibrated to account for such complex factors. The performance of the approach is tested against a wide range of field data for Entomological Inoculation Rate (EIR) values. Results The overall transmission characteristics can be estimated by including various features that impact EIR and malaria incidence, for instance by reducing the mosquito–human contact rates and increasing the mortality through control measures or socio-economic factors. Conclusion Complex phenomena such as the impact of the coverage of the population with long-lasting insecticidal nets (LLINs), changes in behaviour of the infected vector and the impact of socio-economic factors can be included in continuous level modelling. Though the present work should be interpreted as a proof of concept, based on one set of field data only, certain interesting conclusions can already be drawn. While the present work focuses on malaria, the computational approach is generic, and can be applied to other cases where suitable in situ data is available.

Funder

Centre of Excellence of Inverse Modelling and Imaging (CoE), Academy of Finland

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3