Author:
Okiring Jaffer,Gonahasa Samuel,Maiteki-Sebuguzi Catherine,Katureebe Agaba,Bagala Irene,Mutungi Peter,Kigozi Simon P.,Namuganga Jane F.,Nankabirwa Joaniter I.,Kamya Moses R.,Donnelly Martin J.,Churcher Thomas S.,Staedke Sarah G.,Sherrard-Smith Ellie
Abstract
Abstract
Background
Disruptions in malaria control due to COVID-19 mitigation measures were predicted to increase malaria morbidity and mortality in Africa substantially. In Uganda, long-lasting insecticidal nets (LLINs) are distributed nationwide every 3–4 years, but the 2020–2021 campaign was altered because of COVID-19 restrictions so that the timing of delivery of new nets was different from the original plans made by the National Malaria Control Programme.
Methods
A transmission dynamics modelling exercise was conducted to explore how the altered delivery of LLINs in 2020–2021 impacted malaria burden in Uganda. Data were available on the planned LLIN distribution schedule for 2020–2021, and the actual delivery. The transmission model was used to simulate 100 health sub-districts, and parameterized to match understanding of local mosquito bionomics, net use estimates, and seasonal patterns based on data collected in 2017–2019 during a cluster-randomized trial (LLINEUP). Two scenarios were compared; simulated LLIN distributions matching the actual delivery schedule, and a comparable scenario simulating LLIN distributions as originally planned. Model parameters were otherwise matched between simulations.
Results
Approximately 70% of the study population received LLINs later than scheduled in 2020–2021, although some areas received LLINs earlier than planned. The model indicates that malaria incidence in 2020 was substantially higher in areas that received LLINs late. In some areas, early distribution of LLINs appeared less effective than the original distribution schedule, possibly due to attrition of LLINs prior to transmission peaks, and waning LLIN efficacy after distribution. On average, the model simulations predicted broadly similar overall mean malaria incidence in 2021 and 2022. After accounting for differences in cluster population size and LLIN distribution dates, no substantial increase in malaria burden was detected.
Conclusions
The model results suggest that the disruptions in the 2020–2021 LLIN distribution campaign in Uganda did not substantially increase malaria burden in the study areas.
Funder
Bill & Melinda Gates Foundation
UKRI Fellowship from the Medical Research Council
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. WHO. World malaria report 2023. Geneva: World Health Organization; 2023. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
2. Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, et al. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet. 2016;387:1785–8.
3. Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana S-I, Yamauchi M, et al. Evidence of artemisinin-resistant malaria in Africa. N Engl J Med. 2021;385:1163–71.
4. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–67.
5. Churcher TS, Lissenden N, Griffin JT, Worrall E, Ranson H. The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa. Elife. 2016;5: e16090.