Drivers of autochthonous malaria cases over time: could the Central European present the African future?

Author:

Kenyeres Zoltán

Abstract

Abstract Background Results of spatial and temporal comparison of malaria hotspots and coldspots could improve the health measures of malaria control and eradication strategies. The study aimed to reveal the spatially and temporally independent correlations between the potentially most effective background variables and the number of autochthonous malaria cases. Methods Relationships between malaria cases and background variables were studied in 2 km × 2 km sized quadrates (10 Central European and 10 African). In addition to the current habitat structure of the African sites, annual precipitation, and annual mean temperature, data of the above parameters detected in the nineteenth and twentieth centuries and currently in the Central European sites were included in the analyses (n = 40). Mann–Whitney tests, Principal Component Analysis, and Generalized Linear Models were used for the examinations. Results In addition to the apparent significant positive correlation of malaria cases with annual rainfall and mean temperature, several correlations were found for habitat parameters. The cover of marshlands in the 19th-century habitat structure of Central European quadrates was considerably the same as in the recent African ones. The extent of rural residential areas was significantly smaller in the 19th-century habitat structure of Central European quadrats than in present-day African ones. According to the revealed correlations, the surface cover of rural residential areas is the main driver of the number of autochthonous malaria cases that we can directly impact. Conclusions The study confirmed with historical comparison that not only the annual rainfall and mean temperature, the cover of marshlands and other habitats with breeding sites, but also the elements of the rural human environment play a significant role in the high number of autochthonous malaria cases, probably through the concentration and enhancing sites for vector mosquitoes. The latter confirms that a rapid urbanization process could reduce malaria cases in the most infected areas of Africa. Until the latter happens, extensive biological control of Anopheles larvae and chemical control (both outdoor and indoor) of their imagoes, further mosquito nets, repellents, and carbon dioxide traps will need to be applied more widely in the most heavily infested areas.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3