Abstract
Abstract
Background
Plasmodium vivax is emerging as the dominant and prevalent species causing malaria in near-elimination settings outside of Africa. Hypnozoites, the dormant liver stage parasite of P. vivax, are undetectable to any currently available diagnostic test, yet are a major reservoir for transmission. Advances have been made to harness the naturally acquired immune response to identify recent exposure to P. vivax blood-stage parasites and, therefore, infer the presence of hypnozoites. This in-development diagnostic is currently able to detect infections within the last 9-months with 80% sensitivity and 80% specificity. Further work is required to optimize protein expression and protein constructs used for antibody detection.
Methods
The antibody response against the top performing predictor of recent infection, P. vivax reticulocyte binding protein 2b (PvRBP2b), was tested against multiple fragments of different sizes and from different expression systems. The IgG induced against the recombinant PvRBP2b fragments in P. vivax infected individuals was measured at the time of infection and in a year-long observational cohort; both conducted in Thailand.
Results
The antibody responses to some but not all different sized fragments of PvRBP2b protein are highly correlated with each other, significantly higher 1-week post-P. vivax infection, and show potential for use as predictors of recent P. vivax infection.
Conclusions
To achieve P. vivax elimination goals, novel diagnostics are required to aid in detection of hidden parasite reservoirs. PvRBP2b was previously shown to be the top candidate for single-antigen classification of recent P. vivax exposure and here, it is concluded that several alternative recombinant PvRBP2b fragments can achieve equal sensitivity and specificity at predicting recent P. vivax exposure.
Funder
National Health and Medical Research Council
National Institute of Allergy and Infectious Diseases
Global Health Innovative Technology Fund
Howard Hughes Medical Institute-Wellcome International Research Scholar
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference23 articles.
1. WHO. Malaria surveillance, monitoring & evaluation: a reference manual. Geneva, World Health Organization; 2019.
2. WHO. World malaria report 2020 [Internet]. Geneva, World Health Organization. 2020. Available from: https://www.who.int/publications/i/item/9789240015791.
3. Sattabongkot J, Suansomjit C, Nguitragool W, Sirichaisinthop J, Warit S, Tiensuwan M, et al. Prevalence of asymptomatic Plasmodium infections with sub-microscopic parasite densities in the northwestern border of Thailand: a potential threat to malaria elimination. Malar J. 2018;17:329.
4. Fola AA, Nate E, Abby Harrison GL, Barnadas C, Hetzel MW, Iga J, et al. Nationwide genetic surveillance of Plasmodium vivax in Papua New Guinea reveals heterogeneous transmission dynamics and routes of migration amongst subdivided populations. Infect Genet Evol. 2018;58:83–95.
5. White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J. 2011;10:297.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献