Making data map-worthy—enhancing routine malaria data to support surveillance and mapping of Plasmodium falciparum anti-malarial resistance in a pre-elimination sub-Saharan African setting: a molecular and spatiotemporal epidemiology study

Author:

Kagoro Frank M.,Allen Elizabeth,Mabuza Aaron,Workman Lesley,Magagula Ray,Kok Gerdalize,Davies Craig,Malatje Gillian,Guérin Philippe J.,Dhorda Mehul,Maude Richard J.,Raman Jaishree,Barnes Karen I.

Abstract

Abstract Background Independent emergence and spread of artemisinin-resistant Plasmodium falciparum malaria have recently been confirmed in Africa, with molecular markers associated with artemisinin resistance increasingly detected. Surveillance to promptly detect and effectively respond to anti-malarial resistance is generally suboptimal in Africa, especially in low transmission settings where therapeutic efficacy studies are often not feasible due to recruitment challenges. However, these communities may be at higher risk of anti-malarial resistance. Methods From March 2018 to February 2020, a sequential mixed-methods study was conducted to evaluate the feasibility of the near-real-time linkage of individual patient anti-malarial resistance profiles with their case notifications and treatment response reports, and map these to fine scales in Nkomazi sub-district, Mpumalanga, a pre-elimination area in South Africa. Results Plasmodium falciparum molecular marker resistance profiles were linked to 55.1% (2636/4787) of notified malaria cases, 85% (2240/2636) of which were mapped to healthcare facility, ward and locality levels. Over time, linkage of individual malaria case demographic and molecular data increased to 75.1%. No artemisinin resistant validated/associated  Kelch-13 mutations were detected in the 2385 PCR positive samples. Almost all 2812 samples assessed for lumefantrine susceptibility carried the wildtype mdr86ASN and crt76LYS alleles, potentially associated with decreased lumefantrine susceptibility. Conclusion Routine near-real-time mapping of molecular markers associated with anti-malarial drug resistance on a fine spatial scale provides a rapid and efficient early warning system for emerging resistance. The lessons learnt here could inform scale-up to provincial, national and regional malaria elimination programmes, and may be relevant for other antimicrobial resistance surveillance.

Funder

Worldwide Antimalarial Resistance Network, Oxford, UK

South African Medical Research Council

Wellcome Trust

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Reference93 articles.

1. WHO. World malaria report 2020: 20 years of global progress and challenges. Geneva: World Health Organization; 2020. p. 2020.

2. WHO. World malaria report 2018. Geneva: World Health Organization; 2018. p. 2018.

3. WHO. World malaria report 2021. Geneva: World Health Organization; 2021. p. 2021.

4. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23.

5. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15:415–21.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3