Development of a single resistance to damage metric for mosquito nets related to physical integrity in the field

Author:

Wheldrake Amy,Guillemois Estelle,Chetty Vera,Kilian Albert,Russell Stephen J.

Abstract

Abstract Background In common with the majority of personal protective equipment and healthcare products, the ability for long-lasting insecticidal nets (LLINs) to remain in good physical condition during use is a key factor governing fitness for purpose and serviceability. The inherent ability of a product to resist physical deterioration should be known in advance of it being used to ensure it has maximum value to both the end-user and procurer. The objective of this study was to develop a single performance metric of resistance to damage (RD) that can be applied to any LLIN product prior to distribution. Methods Algorithms to calculate RD values were developed based on consideration of both human factors and laboratory testing data. Quantitative reference forces applied to LLINs by users during normal use were determined so that aspirational performance levels could be established. The ability of LLINs to resist mechanical damage was assessed based on a new suite of textile tests, reflecting actual mechanisms of physical deterioration during normal household use. These tests quantified the snag strength, bursting strength, abrasion resistance and resistance to hole enlargement. Sixteen different unused LLINs were included in the analysis. The calculated RD values for all LLINs and the corresponding physical integrity data for the same nets retrieved from the field (up to 3 years of use) were then compared. Results On a RD scale of 0 (lowest resistance) – 100 (highest resistance), only six of the sixteen LLINs achieved an RD value above 50. No current LLIN achieved the aspirational level of resistance to damage (RD = 100), suggesting that product innovation is urgently required to increase the RD of LLINs. LLINs with higher RD values were associated with lower hole damage (PHI) in the field when adjusted for normal use conditions. Conclusions The RD value of any LLIN product can be determined prior to distribution based on the developed algorithms and laboratory textile testing data. Generally, LLINs need to achieve higher RD values to improve their ability to resist hole formation during normal use. Innovation in LLIN product design focused on the textile material should be actively encouraged and is urgently needed to close the performance gap.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3