Abstract
Abstract
Background
More than ever, it is crucial to make the best use of existing country data, and analytical tools for developing malaria control strategies as the heterogeneity in malaria risk within countries is increasing, and the available malaria control tools are expanding while large funding gaps exist. Global and local policymakers, as well as funders, increasingly recognize the value of mathematical modelling as a strategic tool to support decision making. This case study article describes the long-term use of modelling in close collaboration with the National Malaria Control Programme (NMCP) in Tanzania, the challenges encountered and lessons learned.
Case description
In Tanzania, a recent rebound in prevalence led to the revision of the national malaria strategic plan with interventions targeted to the malaria risk at the sub-regional level. As part of the revision, a mathematical malaria modelling framework for setting specific predictions was developed and used between 2016 and 2019 to (1) reproduce setting specific historical malaria trends, and (2) to simulate in silico the impact of future interventions. Throughout the project, multiple stakeholder workshops were attended and the use of mathematical modelling interactively discussed.
Evaluation
In Tanzania, the model application created an interdisciplinary and multisectoral dialogue platform between modellers, NMCP and partners and contributed to the revision of the national malaria strategic plan by simulating strategies suggested by the NMCP. The uptake of the modelling outputs and sustained interest by the NMCP were critically associated with following factors: (1) effective sensitization to the NMCP, (2) regular and intense communication, (3) invitation for the modellers to participate in the strategic plan process, and (4) model application tailored to the local context.
Conclusion
Empirical data analysis and its use for strategic thinking remain the cornerstone for evidence-based decision-making. Mathematical impact modelling can support the process both by unifying all stakeholders in one strategic process and by adding new key evidence required for optimized decision-making. However, without a long-standing partnership, it will be much more challenging to sensibilize programmes to the usefulness and sustained use of modelling and local resources within the programme or collaborating research institutions need to be mobilized.
Funder
Global Fund to Fight AIDS, Tuberculosis and Malaria
Swiss Agency for Development and Cooperation
Wellcome Trust
Department for International Development
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference67 articles.
1. RBM. Mathematical Modelling to Support Malaria Control and Elimination. Roll Back Malaria Partnership, UNDP; 2010. http://www.rollbackmalaria.org/microsites/wmd2014/report5.html.
2. Maude RJ, Lubell Y, Socheat D, Yeung S, Saralamba S, Pongtavornpinyo W, et al. The role of mathematical modelling in guiding the science and economics of malaria elimination. Int Health. 2010;2:239–46.
3. Garnett GP, Cousens S, Hallett TB, Steketee R, Walker N. Mathematical models in the evaluation of health programmes. Lancet. 2011;378:515–25.
4. Grassly NC, Fraser C. Mathematical models of infectious disease transmission. Nat Rev Microbiol. 2008;6:477–87.
5. Njeuhmeli E, Schnure M, Vazzano A, Gold E, Stegman P, Kripke K, et al. Using mathematical modeling to inform health policy: a case study from voluntary medical male circumcision scale-up in eastern and southern Africa and proposed framework for success. PLoS ONE. 2019;14:e0213605.