Abstract
Abstract
Background
Access to human hosts by Anopheles mosquitoes is a key determinant of vectorial capacity for malaria, but it can be limited by use of long-lasting insecticidal nets (LLINs). In Malawi, pyrethroid-treated LLINs with and without the synergist piperonyl butoxide (PBO) were distributed to control malaria. This study investigated the blood-feeding patterns of malaria vectors and whether LLINs containing pyrethroid and PBO led to a reduction of human blood feeding than those containing only pyrethroids.
Methods
Mosquitoes were sampled inside houses from May 2019 through April 2020 by aspiration, pyrethrum spray catch, and light trap methods in two sites. One site (Namanolo, Balaka district) had LLINs containing only pyrethroids whereas the other (Ntaja, Machinga district) had LLINs with both pyrethroids and PBO. Anopheles species, their blood-meal host, and infection with Plasmodium falciparum were determined using PCR methods.
Results
A total of 6585 female Anopheles were sampled in 203 houses. Of these, 633 (9.6%) were blood-fed mosquitoes comprising of 279 (44.1%) Anopheles arabiensis, 103 (16.3%) Anopheles gambiae 212 (33.5), Anopheles funestus, 2 (0.3%), Anopheles parensis and 37 (5.8%) were unidentified Anopheles spp. Blood meal hosts were successfully identified for 85.5% (n = 541) of the blood-fed mosquitoes, of which 436 (81.0%) were human blood meals, 28 (5.2%) were goats, 11 (2.0%) were dogs, 60 (11.1%) were mixed goat-human blood meals, 5 (0.9%) were dog–human, and 1 was a mixed dog-goat. Human blood index (fraction of blood meals that were humans) was significantly higher in Namanolo (0.96) than Ntaja (0.89). Even though human blood index was high, goats were over-selected than humans after accounting for relative abundance of both hosts. The number of infectious Anopheles bites per person-year was 44 in Namanolo and 22 in Ntaja.
Conclusion
Although LLINs with PBO PBO may have reduced human blood feeding, access to humans was extremely high despite high LLIN ownership and usage rates in both sites. This finding could explain persistently high rates of malaria infections in Malawi. However, this study had one village for each net type, thus the observed differences may have been a result of other factors present in each village.
Funder
Foundation for the National Institutes of Health
Fogarty International Center-NIH
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference46 articles.
1. Malawi Ministry of Health. Malawi Malaria Indicator Survey 2017. Lilongwe, Malawi, 2018.
2. Mathanga DP, Walker ED, Wilson ML, Ali D, Taylor TE, Laufer MK. Malaria control in Malawi: current status and directions for the future. Acta Trop. 2012;121:212–7.
3. Wilson ML, Walker ED, Mzilahowa T, Mathanga DP, Taylor TE. Malaria elimination in Malawi: research needs in highly endemic, poverty-stricken contexts. Acta Trop. 2012;121:218–26.
4. Chipeta MG, Giorgi E, Mategula D, Macharia PM, Ligomba C, Munyenyembe A, et al. Geostatistical analysis of Malawi’s changing malaria transmission from 2010 to 2017. Wellcome Open Res. 2019;4:57.
5. WHO. World malaria report 2018. Geneva: World Health Organization; 2018.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献