The causes of holes and loss of physical integrity in long‐lasting insecticidal nets

Author:

Wheldrake Amy,Guillemois Estelle,Arouni Hamidreza,Chetty Vera,Russell Stephen J.

Abstract

Abstract Background Long-lasting insecticidal nets (LLINs) are expected to last for at least 3 years, but whilst this may be achieved from an insecticidal perspective, physical protection is frequently compromised much earlier because of the rapid accumulation of holes during use. To understand why LLINs are so susceptible to loss of physical integrity, thousands of hole damage sites in LLINs retrieved from the field in Africa and Asia were forensically studied to identify the persistent underlying causes. Methods A total of 525 LLINs consisting of six different brands from five different countries across Africa and Asia were collected from the field after 1 to 3 years in use. More than 42,000 individual sites of hole damage were analysed based on the morphology and size of each individual hole, aided by optical microscopy (OM) and scanning electron microscopy (SEM). The fracture morphology enabled positive identification of the underlying mechanisms of the damage. Results Across all LLINs and geographical settings, mechanical damage is the primary cause of holes and loss of physical integrity in LLINs (63.14% by frequency and 81.52% by area). Snagging is the single most frequent mechanical damage mechanism, whilst the largest sized holes in LLINs result from seam failure and tearing. Abrasion and hole enlargement are also responsible for a progressive loss in the physical integrity of nets. Collectively, these five modes of mechanical damage can be expected to result from normal use of LLINs by households. Evidence of deliberate cutting, burn holes and rodent damage was observed to a lesser degree, which LLINs are not designed to withstand. Conclusions Loss of physical integrity in LLINs is an inevitable consequence of using a vector control product that has an inherently low resistance to mechanical damage during normal use. To improve performance, new specifications based on laboratory textile testing is needed, to assess the resistance of LLIN products to the primary causes of mechanical damage when in use, which are snagging, tearing, abrasion and hole enlargement. Seam construction also needs to meet a revised minimum standard to reduce the risk of a rapid loss of physical integrity during use.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3